\(M=\frac{2}{1+\sqrt{a}}\)
tìm số tự nhiên a dể 18M là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
Đặt \(X=\sqrt[3]{4798655-27n}\) với \(20349< n< 47238\)
\(\Rightarrow X^3=A\)thoả mãn \(3514229< 4789655-27n< 4240232\) hay \(351429< X^3< 4240232\)
Tức là: \(152,034921< X< 161,8563987\)
Do X là số tự nhiên nên X chỉ có thể bằng 1 trong các số sau: 153; 154; 155; .... ; 160; 161
Vì: \(X=\sqrt[3]{478965-27n}\) nên \(n=\frac{478965-X^3}{27}\)
Ghi công thức tính trên n
Máy: \(X=X+1:=\frac{478965-X^3}{27}\)
Cho đến khi nhận được các giá trị.
Nguyên dương tương ứng được: \(X=158\Rightarrow A=393944312\)
Với x bắt đầu là 153
P/s: Bn cũng có thể giải bài này bằng máy tính Casio fx-570MS
Ta có:
\(M=\frac{2}{1+\sqrt{a}}\le2\)
Mà để 18M là số chính phương thì M=2
Suy ra: \(\frac{2}{1+\sqrt{a}}=2\)
Suy ra: \(1+\sqrt{a}=1\)
\(\sqrt{a}=0\Rightarrow a=0\)
Vậy a=0