K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

1/5^2<1/4.5; 1/6^2<1/5.6; ...; 1/100^2<1/99.100

do đó: 

15 tháng 2 2018

Bạn nào giải đi mk k cho

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

2 tháng 8 2016

học cô thủy đúng ko

3 tháng 8 2016

Chắc chắn học cô Thủy Lê Độ

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

10 tháng 10

Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:

   \(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)

  +  Ta có: 5 \(\equiv\)  1 (mod 2) ⇒  \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2) 

⇒ \(5^{1^{8^{9^0}}}\)  \(\equiv\) 1 (mod2)

   Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó

\(19^{5^{1^{8^{9^0}}}}\) =  \(19^{2k+1}\)  = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)\(\overline{..9}\) (1)

+ Mặt khác:  9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4) 

⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)

Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó 

\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\)  (2)

Kết hợp (1) và (2) ta có: 

A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)