K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

\(x^2+2mx-1=0\)

\(ac=-1.1=-1< 0\Rightarrow\) pt có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-1\end{matrix}\right.\)

Theo đề:\(x_1+2x_2=0\Rightarrow x_1=-2x_2\)

\(\Rightarrow-2x_2^2=-1\Rightarrow x_2^2=\dfrac{1}{2}\Rightarrow x_2=\pm\sqrt{\dfrac{1}{2}}\Rightarrow x_1=\pm\sqrt{2}\)

\(TH_1:\left\{{}\begin{matrix}x_2=\sqrt{\dfrac{1}{2}}\\x_1=-\sqrt{2}\end{matrix}\right.\Rightarrow x_1+x_2=-\dfrac{\sqrt{2}}{2}\Rightarrow m=\dfrac{\sqrt{2}}{4}\)

\(TH_2:\left\{{}\begin{matrix}x_2=-\sqrt{\dfrac{1}{2}}\\x_1=\sqrt{2}\end{matrix}\right.\Rightarrow x_1+x_2=\dfrac{\sqrt{2}}{2}\Rightarrow m=-\dfrac{\sqrt{2}}{4}\)

 

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

b: Δ=(-2m)^2-4(m^2-2m+2)

=4m^2-4m^2+8m-8=8m-8

Để pt có 2 nghiệm phân biệt thì 8m-8>0

=>m>1

x1^2+x2^2=x1+x2+8

=>(x1+x2)^2-2x1x2-(x1+x2)=8

=>(2m)^2-2(m^2-2m+2)-2m=8

=>4m^2-2m^2+4m-4-2m=8

=>2m^2+2m-12=0

=>m^2+m-6=0

=>(m+3)(m-2)=0

mà m>1

nên m=2

=>32m-16=0

=>m=1/2

27 tháng 5 2022

Sửa đề: Tim m để phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn: \(x_1+3x_2=6\)

Giải

Ta có: \(\Delta=b^2-4ac=\left(-2m\right)^2-4.1.\left(2m-2\right)=4m^2-8m+8=4\left(m^2-2m+2\right)\)

\(=4\left[\left(m^2-2m+1\right)+1\right]=4\left[\left(m-1\right)^2+1\right]=4\left(m-1\right)^2+4>0\forall m\in R\)

Theo định lý Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\left(1\right)\\x_1x_2=\dfrac{c}{a}=2m-2\left(2\right)\end{matrix}\right.\)

Lại có: \(x_1+3x_2=6\) (3)

Từ (1) và (3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1+3x_2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_2=6-2m\\x_1+3x_2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1+3.\left(3-m\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1=3m-3\end{matrix}\right.\)

Thay \(x_1=3m-3;x_2=3-m\) vào (2) ta được:

\(\left(3m-3\right)\left(3-m\right)=2m-2\)

\(\Leftrightarrow-3m^2+12m-9-2m+2=0\)

\(\Leftrightarrow3m^2-10m+7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{7}{3}\end{matrix}\right.\)

Vậy \(m=1;m=\dfrac{7}{3}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1+3x_2=6\)

31 tháng 12 2017

Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1  0 và  = 4 m 2 – 4 (2m – 1)

= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2   ≥ 0 ;   ∀ m

Phương trình có hai nghiệm x 1 ;   x 2 với mọi m

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1

Xét 

  x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10

⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2   – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0

  m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0

⇔ m = 2 m = − 1

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án: D

23 tháng 2 2022

a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)

4 tháng 3 2022

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)