(x+3)^4+(x-1)^4=626
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).
PT đã cho tương đương với:
\((a+2)^4+(a-2)^4=626\)
\(\Leftrightarrow 2a^4+48a^2+32=626\)
\(\Leftrightarrow a^4+24a^2-297=0\)
\(\Leftrightarrow (a^2+12)^2=441\)
\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Nếu $a=3$ thì \(x=a-1=2\)
Nếu $a=-3$ thì $x=a-1=-4$
Câu 2:
Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:
\(a^3+b^3+(-a-b)^3=0\)
\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)
\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)
\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)
Áp dụng bảng tam giác Pascal ta có :
\(\left(x-2\right)^4=x^4-8x^3+24x^2-32x+16\)
\(\left(x+2\right)^4=x^4+8x^3+24x^2+32x+16\)
\(\Rightarrow\left(x-2\right)^4+\left(x+2\right)^4=2x^4+48x^2+32=626\)
\(\Leftrightarrow2x^4+48x^2-594=0\)
\(\Leftrightarrow2x^4-6x^3+6x^3-18x^2+66x^2-594=0\)
\(\Leftrightarrow2x^3\left(x-3\right)+6x^2\left(x-3\right)+66\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x^3+6x^2+66x+198\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[2x^2\left(x+3\right)+66\left(x+3\right)\right]\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x+3\right)\left(x^2+33\right)\left(x-3\right)=0\)
\(\Rightarrow x=\pm3\)
Vậy nghiệm \(S=\left\{\pm3\right\}\)
e:
Tham khảo:
a: \(\Leftrightarrow x^2-2x+1+4x^2+4x+4-5x^2+5=0\)
\(\Leftrightarrow2x+10=0\)
hay x=-5
Đặt x+1=a rồi thay vào
\(\left(x+3\right)^4+\left(x-1\right)^4=626\)
Đặt \(a=x+1\)
\(\Rightarrow\)\(x+3=a+2\)
\(\Rightarrow\)\(x-1=a-2\)
ta có phương trình :
\(\left(a-2\right)^4+\left(a+2\right)^4-626=0\)
Tới đây rồi thì dễ tự giải phương trình tiếp