1. \(\Delta ABC\)có tia CE (E thuộc cạnh AB) chia tam giác thành 2 tam giác đồng dạng theo tỉ số đồng dạng là \(\sqrt{3}\). Tính các góc của \(\Delta ABC\)
2. Cho \(\Delta ABC\) có \(\widehat{B}=2\widehat{C}\); AB = 5 cm , AC = 8 cm. Tính BC (không dùng tam giác đồng dạng)ư
Bài 1:
TH1: A, D nằm cùng phía với BC
Gọi I là trung điểm của BC. Khi đó theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có:
IB = ID = IC
Vậy nên \(\widehat{BDC}=\widehat{BDI}=\frac{\widehat{DIC}}{2}\) (Tính chất góc ngoài) (1)
Trên tia đối của tia IA lấy điểm A' sao cho I là trung điểm AA'.
Tam giác ABC vuông nên ta cũng có IB = IA = IC. Vậy thì IB = IA = IC = IA' hay tam giác ACA' vuông tại C.
Từ đó tương tự như bên trên ta có:
\(\widehat{DAI}=\frac{\widehat{DIA'}}{2};\widehat{CAI}=\frac{\widehat{CIA'}}{2}\)
\(\Rightarrow\widehat{DAC}=\widehat{DAI}-\widehat{CAI}=\frac{\widehat{DIA'}-\widehat{CIA'}}{2}=\frac{\widehat{DIC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DBC}\)
Hoàn toàn tương tự ta có: \(\widehat{ADB}=\widehat{ACB}\)
TH2: A, D khác phía với BC
Tương tự như TH1:
Ta có: \(\widehat{DBC}=\frac{\widehat{DIC}}{2}\)
\(\widehat{DAC}=\widehat{DAA'}+\widehat{A'AC}=\frac{\widehat{DIA'}+\widehat{A'IC}}{2}=\frac{\widehat{DIC}}{2}\)
Vậy nên \(\widehat{DAC}=\widehat{DBC}\)
Tương tự \(\widehat{ADB}=\widehat{ACB}\)
Bài 1:
Do BE chia tam giác ABC thành hai tam giác có tỉ số đồng dạng là \(\sqrt{3}\) nên có thể xảy ra các trường hợp sau:
\(\left(1\right)\Delta AEC\sim\Delta EBC;\left(2\right)\Delta AEC\sim\Delta CBE;\left(3\right)\Delta AEC\sim\Delta CEB;\left(4\right)\Delta AEC\sim\Delta ECB\)
(Vì trong các trường hợp còn lại thì tỉ số đồng dạng là \(\frac{EC}{EC}=1\) )
Vì góc \(\widehat{AEC}>\widehat{BCE}\) nên không xảy ta trường hợp (1) và (2); Vì \(\widehat{BEC}>\widehat{EAC}\)nên không xảy ta trường hợp (4)
Do đó chỉ có thể xảy ra trường hợp (3) hay \(\Delta AEC\sim\Delta CEB\Rightarrow\widehat{AEC}=\widehat{BEC}\) và \(\frac{EC}{EB}=\frac{AE}{CE}=\sqrt{3}\)
\(\Rightarrow\widehat{AEC}=\widehat{CEB}=90^o\)
Vậy nên tam giác AEC vuông tại E và \(\frac{AE}{CE}=\sqrt{3}\Rightarrow\widehat{ACE}=60^o;\widehat{CAE}=30^o\)
Vậy tam giác ECB vuông tại E và \(\frac{EC}{EB}=\sqrt{3}\Rightarrow\widehat{CBE}=60^o;\widehat{ECB}=30^o\)
Do đó \(\widehat{CAB}=30^o;\widehat{CBA}=60^o;\widehat{ACB}=90^o.\)