cho a+b=c+d
a^2+b^2=c^2+d^2
chung minh a^2018+b^2018=c^2018+b^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)
a) Từ (1) ta có:
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)
Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b) Từ (1) ta có:
\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)
\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)
Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)