\(\dfrac{3x+2}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{x^2+2x+1}\)
rút gọn ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)
\(=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)
\(=\left[\left(\dfrac{2x+3}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)
\(=\left[\dfrac{x^2+7x}{x\left(x+1\right)^2}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)
\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}\)
\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}=\dfrac{2x\left(2x+5\right)}{\left(x+1\right)\left(3x+1\right)}\)
ĐK: \(3x\ne\pm y;x\ne0\)
A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)
= \(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)
Thay x = 1; y=2, ta có:
A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)
\(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)
\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
\(a,\dfrac{3x+21}{x^2-9}+\dfrac{2}{x+3}-\dfrac{3}{x-3}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}-\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+21+2x-6-3x-9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2}{x-3}\)
\(b,\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\\ =\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x+3}{x^2-1}\\ =\dfrac{3x^2+4x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{3x^2+4x+1-x^2+2x-1}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{x^2+2x-3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{2x^2+6x-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x^2+3x\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x\left(x+3\right)+\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x+3}{\left(x-1\right)^2}\)
\(D=\dfrac{5}{2x^2+6x}-\dfrac{4-3x^2}{x^2-9}-3\) (đk:\(x\ne3;x\ne-3\))
\(=\dfrac{5}{2x\left(x+3\right)}-\dfrac{4-3x^2}{\left(x-3\right)\left(x+3\right)}-3\)
\(=\dfrac{5\left(x-3\right)}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{\left(4-3x^2\right).2x}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{3.2x\left(x-3\right)\left(x+3\right)}{2x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{5x-15-8x+6x^3-6x\left(x^2-9\right)}{2x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{51x-15}{2x\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ: \(x\ne\pm3,x\ne\dfrac{9}{2}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{2x-9}.\dfrac{3\left(x-3\right)-x}{x\left(x-3\right)}\right]\) : \(\dfrac{x^2-5x-6}{-2\left(x-3\right)\left(x+3\right)}\)
= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x-3}\right]:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{x\left(x+3\right)-2x^2+2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}=1\)
\(M=\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(M=\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)
\(M=\dfrac{1}{x-1}-\dfrac{1}{x-5}\)
\(M=\dfrac{x-5-x+1}{\left(x-5\right)\left(x-1\right)}=-\dfrac{4}{x^2-6x+5}\)
\(\dfrac{3x+2}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{x^2+2x+1}\)
= \(\dfrac{3x+2}{\left(x-1\right)^2}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}-\dfrac{3x-2}{\left(x+1\right)^2}\)
= \(\dfrac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)^2}-\dfrac{\left(3x-2\right)\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}\)
= \(\dfrac{3x^3+8x^2+7x+2}{\left(x^2-1\right)^2}-\dfrac{6x^2-6}{\left(x^2-1\right)^2}-\dfrac{3x^3-8x^2+7x-2}{\left(x^2-1\right)^2}\)
= \(\dfrac{10x^2+10}{\left(x^2-1\right)^2}\)
= \(\dfrac{10\left(x^2+1\right)}{\left(x^2-1\right)^2}\)