Tìm (x,y) thỏa mãn (x+2)2+4=\(\frac{20}{\left(y-4\right)+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
Ta có: \(\frac{x^2-4}{x}+4+\frac{y^2-4}{y}+4=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Lại có: \(\frac{x^2-4}{x}+4=x+\frac{4x-4}{x}\ge4\sqrt{x-1}\)
Tương tự: \(\frac{y^2-4}{y}+4\ge4\sqrt{y-1}\)
Cộng từng vế: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8\ge4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Dấu "=" xảy ra khi: x=y=2
Vậy (x;y)=(2'2)
Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)
Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)
Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:
\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)
\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)
\(\Rightarrow A\ge\frac{1}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài này t làm rồi, "nhẹ" không ấy mà :|
Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)
Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)
\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)
\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)
BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.
Ta có \(\left(x-y\right)^2\ge0\forall x,y\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}..\)
Theo giả thiết \(x^2+y^2=\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\)
\(\Rightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\ge\frac{\left(x+y\right)^2}{2}\)
Mà x,y>1/4\(\Rightarrow\sqrt{x}+\sqrt{y}-1\ge\frac{x+y}{2}\)
\(\Leftrightarrow x+y\le2\sqrt{x}+2\sqrt{y}-2\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\le0\)
Mà \(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y}-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y}=1\end{cases}\Leftrightarrow}x=y=1\left(TMĐK\right).\)
Có cách khác nè:
P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3
⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)
Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4
⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32
Dấu "=" khi x=y=2
x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)
Tương tự và cộng hai BĐT lại :
p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)
Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1
Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8
Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32
Min P = 32 <=> x = y = 2