Từ ba đỉnh A, B, C của tam giác ABC vẽ ba đường thẳng song song với nhau, chúng lần lượt cắt BC và các đường thẳng CA, BA tại D, E, F.
Chứng minh rằng:
a) 1/AD = 1/BE + 1/CF
b) Diện tích SΔDEF = 2SΔABC
Help me !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BEC\) có \(AD//BE\left(gt\right)\) \(\Rightarrow\dfrac{AD}{BE}=\dfrac{CD}{BC}\left(2\right)\)
Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BFC\) có \(AD//CF\left(gt\right)\) \(\Rightarrow\dfrac{AD}{CF}=\dfrac{BD}{BC}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\dfrac{AD}{BE}+\dfrac{AD}{CF}=\dfrac{CD}{BC}+\dfrac{BD}{BC}\)
\(\Rightarrow AD\left(\dfrac{1}{BE}+\dfrac{1}{CF}\right)=\dfrac{CD+BD}{BC}=\dfrac{BC}{BC}=1\\ \Rightarrow\dfrac{1}{BE}+\dfrac{1}{CF}=\dfrac{1}{AD}\left(đpcm\right)\)
b) Áp dụng hệ quả định lý \(Ta-lét\) vào \(\Delta BAE\) có \(BE//CF\left(gt\right)\) \(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{\: AB}\)
Xét \(\Delta EAF\) và \(\Delta CAB\) có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{\: AB}\left(\text{Chứng minh trên}\right)\\\widehat{EAF}=\widehat{CAB}\left(\text{2 góc đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta EAF\sim\Delta CAB\left(c.g.c\right)\\ \Rightarrow\widehat{AEF}=\widehat{ACB}\left(\text{2 góc tương ứng}\right)\\ \Rightarrow EF//BC\left(\text{2 góc so le trong}\right)\)
Mà \(BE//CF\left(gt\right)\)
\(\Rightarrow\text{Tứ giác }BECF\text{ là hình bình hành}\left(\text{Dấu hiệu nhận biết}\right)\\ \Rightarrow A\text{ là trung điểm }EC\left(\text{Tính chất đường chéo hình bình hành}\right)\\ \Rightarrow AC=\dfrac{1}{2}AE\\ \Rightarrow S_{ABC}=\dfrac{1}{2}S_{BEC}\left(\text{Chung đường cao hạ từ B xuống EC}\right)\left(5\right)\)
Từ \(E\) kẻ \(EI\perp BC\Rightarrow EI\) là đường cao ứng với \(BC\) của \(\Delta EBC\)
Từ \(D\) kẻ \(DK\perp EF\Rightarrow DK\) là đường cao ứng với \(EF\) của \(\Delta EDF\)
Ta có : \(DI//EK\left(I\in BC;K\in EF;BC//EF\right)\left(3\right)\)
\(\Rightarrow EI\perp EK\left(EI\perp DI\right)\\ \Rightarrow EI//DK\left(\text{Cùng }\perp EK\right)\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow\text{Tứ giác }DIEK\text{ là hình bình hành}\left(\text{Dấu hiệu nhận biết}\right)\)\(\Rightarrow DI=EK\left(\text{2 cạnh đối hình bình hành}\right)\)
Mà \(EF=BC\left(\text{2 cạnh đối hình bình hành}\right)\)
\(\Rightarrow S_{DEF}=S_{EBC}\left(6\right)\)
Từ \(\left(5\right)\) và \(\left(6\right)\Rightarrow S_{ABC}=\dfrac{1}{2}S_{DEF}\)
\(\Rightarrow S_{DEF}=2S_{ABC}\left(đpcm\right)\)