(giúp mình vs ~~)
3x2(5x+1)+6x3(5x+2)=9x3(5x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.
PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$
$\Leftrightarrow -3-6x=0$
$\Leftrightarrow 6x=-3$
$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$
\(3x^2-5x-8=3x\left(x+1\right)-8\left(x+1\right)=\left(x+1\right)\left(3x-8\right)\)
Lời giải:
$5^x+5^{x+1}+5^{x+2}+5^{x+3}=1+2+3+...+87+88-4^2$
$5^x(1+5+5^2+5^3)=88.89:2-16$
$5^x.156=3900$
$5^x=3900:156=25=5^2$
$\Rightarrow x=2$
a)=\(3x^3-15x^2+21x\)
b)\(=-2x^4y-10x^2y+2xy\)
c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)
d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)
e)\(=x^2-4y^2\)
f)\(=-2x^2y^3+y-3\)
g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)
h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)
i)\(=x^2-x-3\)
j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
a: P(x)=4x-6x^3+5x-7x^2-9x+5
=-6x^3-7x^2+5
Q(x)=9x^3-3x^3+5x^2-4x^2+2x-2x-4
=6x^3+x^2-4
b: P(x)+Q(x)
=-6x^3-7x^2+5+6x^3+x^2-4
=-6x^2+1
P(x)-Q(x)
=-6x^3-7x^2+5-6x^3-x^2+4
=-12x^3-8x^2+9
3\(x^2\).(5\(x\) + 1) + 6\(x^3\).(5\(x\) + 2) = 9\(x^3\) .(5\(x\) + 3)
15\(x^3\) + 3\(x^2\) + 30\(x^4\) + 12\(x^3\) = 45\(x^4\) + 27\(x^3\)
(15\(x^3\) + 12\(x^3\)) + 3\(x^2\) + 30\(x^4\) - 45\(x^4\) - 27\(x^3\) = 0
27\(x^3\) + 3\(x^2\) - 15\(x^4\) - 27\(x^3\) = 0
3\(x^2\) - 15\(x^4\) = 0
3\(x^2\).(1 - 5\(x^2\)) = 0
\(\left[{}\begin{matrix}x^2=0\\1-5x^2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\5x^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\mp\dfrac{\sqrt{5}}{5}\end{matrix}\right.\)