K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

làm hộ mik vs

30 tháng 4 2021

a, BD là đường p/g của △ABC => \(\dfrac{AB}{AD}=\dfrac{BC}{DC}\)=\(\dfrac{AB+BC}{AC}\)=\(\dfrac{2}{1}\)

Nên \(\dfrac{12}{AD}=\dfrac{2}{1}\)=> AD=6 cm , \(\dfrac{20}{DC}=\dfrac{2}{1}\)=> DC=10 cm

b, Xét △ABC và △HAC có :

∠BAC=∠AHC, ∠BCA chung

=> △ABC ∼ △HAC (g.g)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\) => AC2=BC.HC

30 tháng 4 2021

undefined

7 tháng 9 2017

Xét tam giác ACD và ABE : 

Ta có : góc E=góc D (gt)

Cạnh AD=AE(gt) 

có chung góc A bằng 90 độ 

=> tam giác ACD=ABE (g.c.g) 

6 tháng 3 2020

mình cần mỗi phần d thôi mn ơi, giúp mình bài này với!!!!

8 tháng 4 2018

Xét tam giác ABC ta có 

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180\sigma\)

=> \(\widehat{ACB}=70\sigma\)

=> \(\widehat{BAD}=\widehat{CAD}\)= 37,5 độ

\(\widehat{BAE}\)=  37,5 độ + 90 độ = 127,5 độ

=> góc AEB = 180 độ - ( 35 độ + 127,5 độ )

=> góc AEB = 17,5 độ

+tam giác DAE vuông tại A có đường trung tuyến AM

=> AM = 1/2 DE => AM = ME = MD

+ AM = ME => tam giác AME cân tại M

=> góc AEM = góc EAM = 17,5 độ

+ góc AMC = góc AEM + góc EAM ( tính chất góc ngoài )

=> góc AMC = 17,5 độ + 17,5 độ =  35 độ

\(\widehat{ACB}=\widehat{AMC}+\widehat{CAM}\)=> góc CAM = góc ACB - góc AMC = 35 độ

=> \(\widehat{AMC}=\widehat{CAM}\)

=> tam giác ACM cân tại C ( đpcm )

c) Tam giác ACM cân tại C => AC = CM

góc ABC = góc AMC => tam giác ABM cân tại A

=> AB = AM => AB = ME ( AM = ME )

+ Chu vi tam giác ABC = AB + AC + BC 

= ME + MC + BC = BE 

=> chu vi tam giác ABC bằng độ dài đoạn BE

Bài 6: 

a: Xét tứ giác AKDH có 

\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)

Do đó: AKDH là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=2,5(cm)

11 tháng 1 2022

a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)

b, áp dụng đl pytago vào tam giác vuông ABC có :

\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)

vì AD là trung tuyến tam giác vuông ABC nên :

\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)

c,vì AKDH là hình chữ nhật nên : DH//KA

mà D là trung điểm BC 

=>H là trung điểm AC

<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\) 

vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)

\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)

 

4 tháng 8 2021

bài 4 thiếu câu nha mn 

a, tính ME,CE

b, Chứng minh AB2=AM.AC

Bài 2: 

Ta có: \(\dfrac{BD}{DC}=\dfrac{3}{7}\)

nên \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

hay \(AB=\dfrac{3}{7}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}+AC^2=20^2=400\)

\(\Leftrightarrow AC^2=\dfrac{9800}{29}\)

\(\Leftrightarrow AC=\dfrac{70\sqrt{58}}{29}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot AC=\dfrac{30\sqrt{58}}{29}\left(cm\right)\)

a: Xét ΔDIB vuông tại D và ΔEIC vuông tại E có

IB=IC

góc B=góc C

=>ΔDIB=ΔEIC

b: Xét ΔIDE có ID=IE

nên ΔIDE cân tại I

c: AB+AC>BC=2BI

a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ

=>AM vuông góc MB và AC vuông góc CB

góc BHK+góc BCK=180 độ

=>BHKC nội tiếp

góc EIA+góc EMA=180 độ

=>EIAM nội tiếp

b: Xét ΔAMK và ΔACM có

góc AMK=góc ACM(=góc ABM)

góc MAK chung

=>ΔAMK đồng dạng với ΔACM

=>AM/AC=AK/AM

=>AM^2=AK*AC

c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có

góc IAE chung

=>ΔAIE đồng dạng với ΔACB

=>AI/AC=AE/AB

=>AI*AB=AC*AE

Xét ΔBIE vuông tại I và ΔBMA vuông tại M có

góc IBE chung

=>ΔBIE đồng dạng với ΔBMA

=>BI/BM=BE/BA

=>BI*BA=BM*BE

=>AE*AC+BM*BE=AB^2