Chứng minh
a) Tích các ước của 50 là 503
b) TÍch các ước của 54 là 544
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
⇒ ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( có 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Kết luận → Các ước của số tự nhiên n bằng n27
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )
+ Gọi các ước của số tự nhiên n lần lượt là d1 ; d2 ; d3 ; ... ; d54 ( d1 ; d2 ; d3 ; ... ; d54 thuộc N* ; d1 khác d2 khác d3 khác ... khác d54 ).
Ta có: n = d1 x d54 = d2 x d53 = d3 x d52 = ... = d27 x d28.
=> ( d1 x d54 ) x ( d2 x d53 ) x ( d3 x d52 ) x ... x ( d27 x d28 ) = n x n x n x ... x n . ( 27 số n )
d1 x d2 x d3 x d4 x ... x d53 x d54 = n27
=> Các ước của số tự nhiên n có h bằng n27. ( đpcm )
gọi các ước của n lần lượt là : a1 ; a2 ..... a54 (Tất cả đều khác nhau và thuộc N*)
Ta có :a1 x a54 ; a2 x a53 ;...;a27 x a28
==> a1 x a54 ; a2 x a53 ;...;a27 x a28 = n x n x n x n x ... x n (có 27 số n)
a1 x a54 ; a2 x a53 ;...;a27 x a28 = n27
==> Tất cả các ước của số tự nhiên n đều = n27