có tồn tại hay ko các số nguyên tố p,q thỏa mãn p2(p3-1)=q(q+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.
Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\) \(\left(1\right)\)
\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\) \(\left(2\right)\)
Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\) \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)
\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)
Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.
Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.
Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)
nên a2p=2 và b2p=2 nên vô lý
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé