K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

trình bày cả lời giải nữa

23 tháng 2 2022

Từ các cặp tam giác đồng dạng ta có:

\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)

\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)

Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.

22 tháng 2 2022

jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi

18 tháng 1 2018

t ngửi thấy mùi đề sai

18 tháng 1 2018

a, Ta có \(\widehat{B}\) +\(\widehat{C}\) = 90

\(\Rightarrow\) \(\dfrac{2}{3}\)\(\widehat{B}\) +\(\dfrac{2}{3}\)\(\widehat{C}\)= 60

Xét tam giác CFB

\(\Rightarrow\) \(\widehat{CFB}\)= 180-60=120