cho tam giác dè vuông tại e DE=3cm Df=4cm kẻ phân giác eh từ h kẻ hk vuông góc với È gọi m là giao điểm của ed và HK CMR: DK song song với MF
ko cần kẻ hình cũng đc nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI GIAO ĐIỂM CỦA DQ VÀ EM LÀ O
B) CO ED = EQ(GT)
=> EO LÀ ĐƯỜNG TRUNG TRỰC CỦA DQ (1)
CÓ TAM GIÁC EDM = TAM GIÁC EQM ( CMT CÂU A)
=> DM = QM ( 2 CẠNH TƯƠNG ỨNG)
=> MO LÀ ĐƯỜNG TRUNG TRỰC CỦA DQ (2)
(1)(2) => EM LÀ ĐƯỜNG TRUNG TRỰC CỦA CỦA DQ
=> DPCM
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
a: Ta có; ΔCAB vuông tại B
=>\(BA^2+BC^2=CA^2\)
=>\(CA^2=3^2+4^2=25\)
=>\(CA=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCBK vuông tại B và ΔCHK vuông tại H có
CK chung
\(\widehat{BCK}=\widehat{HCK}\)
Do đó: ΔCBK=ΔCHK
c: ta có: ΔCBK=ΔCHK
=>KB=KH
Xét ΔKBM vuông tại B và ΔKHA vuông tại H có
KB=KH
\(\widehat{BKM}=\widehat{HKA}\)(hai góc đối đỉnh)
Do đó: ΔKBM=ΔKHA
=>KM=KA
Vì AD là tia phân giác của HAB nên KD = DH
xét tam giác BDK và tam giác IDH
BKD = IHD = 90độ
KD = DH ( cmt )
BDK = IDH ( 2 góc đối đỉnh )
suy ra tam giác BDK = tam giác IDH ( g.c.g)
suy ra IH = KB ( 2 cạnh t.ư)
b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH
xét tam giác BIK và tam giác HKI
BK = IH ( câu a )
BKI = KIH ( cmt )
KI - cạnh chung
suy ra tam giác BIK = ta giác HKI ( c.g.c)
suy ra BIK = IKH ( 2 góc t.ư )
mà 2 góc này ở vị trí SLT nên HK//IB
c) vì KD vuông góc vs AK
AC vuông góc vs AK suy ra AC // KD ( quan hệ từ vuông góc đến song song )
suy ra KDA = DAC ( 2 góc SLT) ( 1 )
Xét tam giác KDA và tam giác HDA
DKA = DHA = 90độ
DA - cạnh huyền
KAD = DAH
suy ra tam giác KDA = tam giác HDA (c.h.g.n)
suy ra KDA= ADH (2 góc t.ư) (2)
từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)
suy ra tam giác DAC cân tại C
suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC
Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD
CHÚC BẠN HỌC TỐT