bai 1 giải phương trình:
a) 2/x-14 - 5/x-13= 2/x-9 - 5/x-11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x+1=13-2x <-->6x=12 <-->x=2
b, (2x-5)(x-4)=0 <-->x=5/2 hoặc x=4
c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0 hoặc x=-2
d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4 TH2:3-x=9-2x -->x=6
a.
ĐKXĐ: \(x\ge5\)
Đặt \(\sqrt{x-5}=t\ge0\Rightarrow x-5=t^2\Rightarrow x=t^2+5\)
Phương trình trở thành:
\(t=1-\left(t^2+5\right)\)
\(\Rightarrow t^2+t+4=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
Cách khác: ĐKXĐ: \(x\ge5\)
Do \(x\ge5\Rightarrow1-x< 0\), mà \(\sqrt{x-5}\ge0\Rightarrow\sqrt{x-5}>1-x\) hay pt vô nghiệm
b.
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow2x+4\sqrt{2x-1}+10=0\)
\(\Leftrightarrow2x-1+4\sqrt{2x-1}+4+7=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+2\right)^2+7=0\)
Phương trình vô nghiệm
c.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x=t^2-1\)
Phương trình trở thành:
\(t+t^2-1=13\)
\(\Rightarrow t^2+t-14=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{57}}{2}< 0\left(loại\right)\\t=\dfrac{-1+\sqrt{57}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}=\dfrac{-1+\sqrt{57}}{2}\)
\(\Rightarrow x=\dfrac{27-\sqrt{57}}{2}\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
a.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=x+1-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)\)
\(\Leftrightarrow\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x-5=-1\)
\(\Leftrightarrow x=2\)
b.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(6x+10+4\sqrt{6x+10}+4=4x^2+20x+25\)
\(\Leftrightarrow\left(\sqrt{6x+10}+4\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}+4=2x+5\\\sqrt{6x+10}+4=-2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}=2x+1\left(1\right)\\\sqrt{6x+10}=-2x-9< 0\left(loại\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow6x+10=4x^2+4x+1\) \(\left(x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow4x^2-2x-9=0\)
\(\Rightarrow x=\dfrac{1+\sqrt{37}}{4}\)
Biến đổi vế trái của phương trình
Biến đổi vế phải của phương trình
Phương trình thu được sau khi biến đổi
Rút gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Giải phương trình
Giải phương trình
Giải phương trình
Giải phương trình
Lời giải thu được