Tìm x để y' > 0
y = x + 1 + 1/x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\ge2+x+y+\frac{4}{x+y}+2\)
\(=4+\frac{2}{x+y}+\left(x+y\right)+\frac{2}{x+y}\)\(\ge4+2\sqrt{2}+\frac{2}{x+y}\)
Ta lại có
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)
Suy ra \(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)
Đẳng thức xảy ra <=> \(x=y=\frac{1}{\sqrt{2}}\)
\(P=\frac{x}{x+1}+\frac{y}{y+1}=2-\frac{1}{x+1}-\frac{1}{y+1}\)
\(\le2-\frac{4}{2+x+y}=2-\frac{4}{2+1}=\frac{2}{3}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
ko nho
\(y=x+1+\frac{1}{x+1}\left(Đk:x\ne-1\right)\)
\(\rightarrow y'=1+0+\frac{1'.\left(x+1\right)-1.\left(x+1\right)'}{\left(x+1\right)^2}\)
\(y'=1+\frac{-1}{\left(x+1\right)^2}\)
\(y'=1-\frac{1}{\left(x+1\right)^2}\)
\(y'=\frac{x^2+2x+1-1}{\left(x+1\right)^2}\)
\(y'=\frac{x^2+2x}{\left(x+1\right)^2}\)
Để y' > 0 \(\Leftrightarrow\frac{x^2+2x}{\left(x+1\right)^2}>0\)
Mà \(\left(x+1\right)^2>0\)
\(\rightarrow x^2+2x>0\)
\(\Leftrightarrow\orbr{\begin{cases}x< -2\\x>0\end{cases}}\)