Cho tam giác ABC có đường cao AH và đường phân giác AD biết AB = 8cm, BC = 9cm, AC = 10cm.
a) Tính BD và CD
b) Đường trung trực của BC tại M cắt AD tại K và cắt AC tại E.Chứng minh tam giác DBK đồng dạng tam giác DAC.
c) Gọi S là trung điểm của AK.Chứng minh BS là tia phân giác của góc ABC.
d) Gọi F là giao điểm của BE và AD.Chứng minh F là trung điểm của AD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)có \(AD\) là phân giác \(\widehat{BAC}\)
\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)
hay \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)
suy ra: \(BD=\frac{8}{2}=4\)
\(DC=\frac{10}{2}=5\)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
d: góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>ΔAID cân tại A
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm