\(\Delta ABC\)cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ \(BH\perp AE,\)\(CK\perp AD\)
Chứng minh:
a) \(\Delta ABD=\Delta ACE\)
b) \(BH=CK\)
c) \(\Delta ABH=\Delta ACK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\Delta ABC\) cân tại A
=> \(\widehat{B}=\widehat{C}\)
mà \(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)
và \(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABC\) và \(\Delta ACE\) có:
AB = AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
DB = CE (gt)
Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)
Xét \(\Delta DBH\) và \(\Delta ECK\) có:
\(\widehat{DHB}=\widehat{CKE}\) ( = 900)
DB = CE (gt)
\(\widehat{D}=\widehat{E}\)(cmt)
Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)
=> BH = CK (hai cạnh tương ứng)
b) Xét \(\Delta ABH\) và \(\Delta ACK\) có:
CK = BH ( cmt )
\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)
AB = AC (gt)
Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)
a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)
Ta có: góc ABC + góc ABD=180o (hai góc kề bù)
góc ACB + góc ACE=180o (hai góc kề bù)
Suy ra: góc ABD = góc ACE
Xét ∆ABD và ∆ACE, ta có:
AB = AC (gt)
góc ABD = góc ACE (chứng minh trên)
BD = CE (gt)
Suy ra: ∆ABD = ∆ACE (c.g.c)
⇒ góc D = góc E (hai góc tương ứng)
Xét hai tam giác vuông BHD và CKE, ta có:
góc BHD =góc CKE=90o
BD = CE (gt)
góc D = gócE (chứng minh trên)
Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)
Suy ra: BH = CK (hai cạnh tương ứng)
Xét tam giác vuông AHB và ACK, ta có:
góc AHB = gócAKC = 90o
AB = AC (gt)
BH = CK (chứng minh trên)
Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK
Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học
a) Ta có : \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A -gt)
Mà : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^o\\\widehat{ACB}+\widehat{ACE}=180^o\end{matrix}\right.\) (kề bù)
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD;\Delta ACE\) có :
\(AB=AC\) (tam giác ABC cân tại A -gt)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
b) Xét \(\Delta AHB;\Delta AKC\) có :
\(\widehat{AHB}=\widehat{AKC}\left(=90^{^O}\right)\)
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{BAH}=\widehat{CAK}\) (do \(\Delta ABD=\Delta ACE\) -cmt)
=> \(\Delta AHB=\Delta AKC\) (cạnh huyền - góc nhọn)
c) Từ \(\Delta ABD=\Delta ACE\) - câu a
=> \(AD=AE\) (2 cạnh tương ứng)
Xét \(\Delta ADE\) có :
\(AD=AE\left(cmt\right)\)
=> \(\Delta ADE\) cân tại A (đpcm)
d) Xét \(\Delta AHK\) có :
\(AH=AK\) (do \(\Delta AHB=\Delta AKC\) - câu b)
=> \(\Delta AHK\) cân tại A
Nên ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{DAE}}{2}\left(1\right)\)
Xét \(\Delta ADE\) cân tại A (câu c) có :
\(\widehat{ADE}=\widehat{AED}=\dfrac{180^{^O}-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\left(=\dfrac{180^{^O}-\widehat{DAE}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> HK // DE
Lại có : \(\left\{{}\begin{matrix}B\in DE\\C\in DE\end{matrix}\right.\)
Do đó : \(\text{BC // HK (đpcm) }\)
a) Vì tam giác ABC cân tại A => góc ABC = góc ACB ( tính chất tam giác cân )
Ta có : góc ABC + góc ABD = 180o ( hai góc kề bù ) ; góc ACB + góc ACE = 180o ( hai góc kề bù ) mà góc ABC = góc ACB ( tam giác ABC cân tại A ) => góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE , có :
AB = AC ( tam giác ABC cân tại A )
góc ABD = góc ACE ( chứng minh trên )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
Vậy tam giác ABD = tam giác ACE ( c-g-c )
b) Xét tam giác AHB và tam giác AKC , có :
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AKC ( = 90o )
góc HAB = góc KAC ( tam giác ABD = tam giác ACE )
=> tam giác AHB = tam giác AKC ( cạnh huyền - góc nhọn)
Vậy tam giác AHB = tam giác AKC ( cạnh huyền - góc nhọn)
c) Vì tam giác ABD = tam giác ACE ( chứng minh trên ) => AD = AE ( hai cạnh tương ứng ) => tam giác ADE cân tại A
Vậy tam giác ADE là tam giác cân
d) Vì tam giác AHB = tam giác AKC ( chứng minh trên ) => AH = AK ( hai cạnh tương ứng ) => tam giác AHK cân tại A => góc AHK = góc AKH ( tính chất tam giác cân )
Xét tam giác AHK cân tại A : góc HAK + góc AHK + góc AKH = 180o ( định lý tổng ba góc trong một tam giác )
=> góc AHK = góc AKH = 180o - góc HAK / 2 ( 1 )
Xét tam giác ADE cân tại A => góc ADE = góc AED ( tính chất tam giác cân ) : góc DAE + góc ADE + góc AED = 180o ( định lý tổng ba góc trong một tam giác )
=> góc ADE = góc AED = 180o - góc DAE / 2 ( 2 )
Từ (1) và (2) => góc AHK = góc ADE mà hai góc ở vị trí đồng vị nên HK // DE hay HK // BC (dấu hiệu nhận biết hai đường thẳng song song)
Vậy HK // BC ( đpcm )
****** Chúc bn hc tốt ***********
Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)
Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)
∠(ACB) +∠(ACE) =180o(hai góc kề bù)
Suy ra: ∠(ABD) =∠(ACE)
Xét ΔABD và ΔACE, ta có:
AB = AC (gt)
∠(ABD) =∠(ACE) (chứng minh trên)
BD=CE (gt)
Suy ra: ΔABD= ΔACE (c.g.c)
⇒∠D =∠E (hai góc tương ứng)
Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:
∠(BHD) =∠(CKE) = 90º
BD=CE (gt)
∠D =∠E (chứng minh trên)
Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)
Suy ra: BH = CK (hai cạnh tương ứng)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)
Lại có DC = DB + BC = CE + BC = BE
Vậy thì \(\Delta DKC=\Delta EHB\) (Cạnh huyền góc nhọn)
\(\Rightarrow BH=CK\)
c) Xét hai tam giác vuông ABH và ACK có :
BH = CK
AC = AC
\(\Rightarrow\Delta BAH=\Delta CAK\) (Cạnh huyền - cạnh góc vuông)