Cho f(x) = x3 + bx2 + cx + d.
Biết f(x) chia cho (x+3) dư 1, chia cho (x-4) dư 8, chia cho (x+3)(x-4) được thương là (x-3) và còn dư. xác định b, c, d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Bài 1:
\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)
\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)
Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)
Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)
Bài 2:
Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1
Gọi đa thức dư là \(ax+b\)
Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên
\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)
Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)
Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)
Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)
Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)
\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)
F(x) = ( x + 3 )( x - 4 ).3x + ax + b
F(-3) = 1 => -3a + b = 1 => b = 1 + 3a
F(4) = 8 => 4a + b = 8 thay b = 1 + 3a
=> 7a + 1 = 8 => a = 1 => b = 1 + 3 = 4
=> f(x) = ( x + 3 )( x - 4 ).3x + x + 4
đến đây chỉ việc nhân ra thôi
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
Ta thấy :
x2 +x -12 = x2 +4x - 3x-12
= x(x+4) - 3(x+4)
= (x-3)(x+4)
Vì :
f(x) chia (x-1)(x+4) được x2 + 3 và còn dư
Mà số dư có bậc không vượt quá 1
=> f(x) = (x-3)(x+4)(x2 + 3) +ax +b
Ta có :
f(x) chia (x-3) dư 2
=> f(3)=2
=> 3a+b=2
f(x) chia (x+4) dư 9
=> f(-4)=9
=> b-4a=9
=> 3a+b-b+4a = 2-9
7a = -7
=> a= -1
=> -3 + b =2
b=5
Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5
Ta có \(f\left(x\right)=g\left(x\right)\left(x+3\right)+1=h\left(x\right)\left(x-4\right)+8=\left(x-3\right)\left(x+3\right)\left(x-4\right)+ax+e\)
Từ đó ta có :
\(f\left(x\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)+a\left(x+3\right)+e-3a=\left(x-3\right)\left(x+3\right)\left(x-4\right)+a\left(x-4\right)+e+4a\)
\(f\left(x\right)=\left(x+3\right)\left[\left(x-3\right)\left(x-4\right)+a\right]+e-3a=\left(x-4\right)\left[\left(x-3\right)\left(x+3\right)+a\right]+e+4a\)
\(\Rightarrow\hept{\begin{cases}e-3a=1\\e+4a=8\end{cases}\Rightarrow\hept{\begin{cases}e=4\\a=1\end{cases}}}\)
Vậy nên \(f\left(x\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)+x+4\)
\(=x^3-4x^2-8x+40\Rightarrow\hept{\begin{cases}b=-4\\c=-8\\d=40\end{cases}}\)
Rút gọn biểu thức:
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)