cho M = 5 + 52+53+54+.....+560
a) tính M
b)chứng minh M\(⋮\)6
c)Tìm số tự nhiên n biết M+5=5n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
\(T=5+5^2+5^3+...+5^{2000}\)
=>\(5T=5^2+5^3+5^4+...+5^{2001}\)
=>\(5T-T=5^2+5^3+...+5^{2001}-5-5^2-...-5^{2000}\)
=>\(4T=5^{2001}-5\)
=>\(4T+5=5^{2001}\)
Sửa đề:\(4T+5=5^m\)
=>\(5^m=5^{2001}\)
=>m=2001
T=5+52+53+...+52000
=>5T=52+53+54+...+52001
=>5T−T=52+53+...+52001−5−52−...−52000
=>4T=52001−5
=>4T+5=52001
Ta có:4T+5=5m
=>52001=5m
=>m=2001
Vậy m=2001
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
a) M = 5 + 52 + 53 + .... + 560
=> 5M = 5 . 5 + 52 . 5 + 53 . 5 + ... + 560 . 5
=> 5M = 52 + 53 + 54 + .... + 561
=> 5M - M = 561 - 5
=> 4M = 561 - 5
=> M = \(\frac{\text{5^{61} - 5}}{4}\)\(\frac{5^{61}-5}{4}\)
b) M = 5 + 52 + 53 + .... + 560
=> M = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 559 + 560 )
=> M = 5 . ( 50 + 51 ) + 53 . ( 50 + 51 ) + ... + 559 . ( 50 + 51 )
=> M = 5 . 6 + 53 . 6 + ... + 559 . 6
=> M = 6 . ( 5 + 53 + ... + 559 ) \(⋮\)6 => đpcm
nâng cao phát triển có đấy
a) 5M=5(\(5+5^2++.......+5^{60}\)
5M=\(5^2+5^3+...+5^{61}\)
5M-M=\(\left(5^2+5^3+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
4M=\(5^{61}-5\)
M=\(\left(5^{61}-5\right):4\)
b) \(\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(5\cdot6+5^3\cdot6+...+5^{59}\cdot6\)
\(6\left(5+5^3+5^5+...+5^{59}\right)\)
\(\Rightarrow M⋮6\)