Cho biểu thức :
\(y=\frac{x^2+2x+2}{2}\)
C/m : \(2y.y''-1=y'^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
\(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow a+b=4\)
\(P=\frac{1}{\sqrt{a^2+1}+a}+\frac{1}{\sqrt{b^2+1}+b}=\sqrt{a^2+1}-a+\sqrt{b^2+1}-b\)
\(P=\sqrt{a^2+1}+\sqrt{b^2+1}-4\)
\(P\ge\sqrt{\left(a+b\right)^2+\left(1+1\right)^2}-4=2\sqrt{5}-4\)
\(P_{min}=2\sqrt{5}-4\) khi \(a=b=2\) hay \(x=y=1\)
\(\Leftrightarrow M=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}-\frac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(\frac{x^2-x-2}{x^2}\right)\)
\(\Leftrightarrow M=\frac{x\left(x-2\right)\left(2-x\right)-4x^2}{2\left(x^2+4\right)\left(2-x\right)}.\frac{x^2-x-2}{x^2}\)
\(\Leftrightarrow M=\frac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x^2+4\right)\left(2-x\right)}.\frac{x\left(x-2\right)+\left(x-2\right)}{x^2}\)
\(\Leftrightarrow M=\frac{x\left(2-x\right)\left(x+2\right)}{2\left(x^2+4\right)\left(2-x\right)}.\frac{\left(x+1\right)\left(x-2\right)}{x^2}\)hình như sai sai đề
Ta có :
\(\frac{2}{x}-\frac{1}{y}=\frac{1}{2x+y}\Leftrightarrow\frac{2y-x}{xy}=\frac{1}{2x+y}\)
⇔ ( 2y - x ) ( 2x + y ) = xy
⇔ 4xy + 2y2 - 2x2 - xy = xy
⇔ 2y2 - 2x2 = - 2xy
⇔ x2 - y2 = xy
⇔ x4 - 2x2y2 + y4 = x2y2
⇔ x4 + y4 = 3x2y2
Lại có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\frac{x^4+y^4}{x^2y^2}=\frac{3x^2y^2}{x^2y^2}=3\)
Vậy . . . . . . . . .
Lời giải:
ĐKXĐ: $x\neq 2; x\neq 0$
a)
\(M=\left[\frac{x(x-2)}{2(x^2+4)}-\frac{2x^2}{(2-x)(x^2+4)}\right].\frac{x^2-x-2}{x^2}=\left[\frac{x(x-2)^2}{2(x^2+4)(x-2)}+\frac{4x^2}{2(x-2)(x^2+4)}\right].\frac{(x-2)(x+1)}{x^2}\)
\(=\frac{x(x-2)^2+4x^2}{2(x-2)(x^2+4)}.\frac{(x-2)(x+1)}{x^2}=\frac{x(x^2+4)}{2(x^2+4)(x-2)}.\frac{(x-2)(x+1)}{x^2}=\frac{x+1}{2x}\)
b)
Để $M$ nguyên thì $x+1\vdots 2x$
$\Rightarrow 2(x+1)\vdots 2x$
$\Rightarrow 2\vdots 2x\Rightarrow 1\vdots x$
Thay vào $M$ thấy $x=1$ thì $M=1$ là số nguyên dương.
c)
$M\geq -3\Leftrightarrow \frac{7x+1}{2x}\geq 0$
\(\left\{\begin{matrix} 7x+1\geq 0\\ 2x>0\end{matrix}\right.\) hoặc \(\left\{\begin{matrix} 7x+1\leq 0\\ 2x< 0\end{matrix}\right.\)
$\Rightarrow x>0$ hoặc $x\leq \frac{-1}{7}$
$\Rightarrow x=\pm 1$
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
Bài 1:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y+x(x-y)}{(x-y)(x+y)}}=\frac{\frac{x^2+y^2}{(x-y)(x+y)}}{\frac{x^2+y^2}{(x-y)(x+y)}}=1\)
Bài 2:
a)
ĐKXĐ: \(\left\{\begin{matrix} x-5\neq 0\\ x^2-25\neq 0\\ x+5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-5\neq 0\\ (x-5)(x+5)\neq 0\\ x+5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+5\neq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 5\)
b)
\(A=\frac{x(x+5)}{(x+5)(x-5)}-\frac{10x}{(x-5)(x+5)}-\frac{5(x-5)}{(x-5)(x+5)}=\frac{x(x+5)-10x-5(x-5)}{(x-5)(x+5)}\)
\(=\frac{x^2-10x+25}{(x-5)(x+5)}=\frac{(x-5)^2}{(x-5)(x+5)}=\frac{x-5}{x+5}\)
c)
Khi $x=9$ thì $A=\frac{9-5}{9+5}=\frac{2}{7}$
\(\text{Áp dụng BĐT:}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
\(\frac{1}{3x+3y+2z}=\frac{1}{\left(x+y\right)+\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\text{tương tự với các BĐT còn lại }\)
\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+3z+2y}+\frac{1}{3y+3z+2x}\le\frac{1}{16}.\left(\frac{4}{x+z}+\frac{4}{x+y}+\frac{4}{y+z}\right)=\frac{1}{16}.24=\frac{3}{2}\left(đpcm\right)\)
\(y'=\frac{2x+2}{2}=x+1\)
\(y''=1\)
Ta có :
\(2y.y''-1-y'^2=2.\frac{x^2+2x+2}{2}-1-\left(x+1\right)^2=x^2+2x+2-1-x^2-2x-1=0\)
\(\Rightarrow2y.y''-1=y'^2\left(đpcm\right)\)
Quái gì lớp 8 mà đã có đạo hàm z