K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \(\Delta AMB\) và \(\Delta AMC\).có:

AB = AC ( do tam giác ABC cân tại A )

MB = MC ( do M là trung điểm BC )

AM là cạnh chung

=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)

=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)

18 tháng 9 2023

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

18 tháng 3 2017

bài này dễ            tính ra các góc nhờ định lí trong tam giác tổng ba góc bằng 180 độ

và góc ngoài IKC của tam giác

góc kề bù

chúc thành công

28 tháng 4 2019

a, vì CE//AD nên \(\widehat{ECA}\)=\(\widehat{DAB}\)mà \(\widehat{DAB}\)=90 độ -45 độ=45 độ

=> \(\widehat{ECA}\)=45 độ

trong tam giác EAC có: \(\widehat{EAC}\)=90 độ; \(\widehat{ECA}\)=45 độ(1)

=> \(\widehat{AEC}\)=45 độ(2)

từ (1) và (2) suy ra tam giác AEC cân tại A

b, tam giác AEC cân tại A mà có góc A vuông nên tam giác AEC vuông cân

=> EC là cạnh huyền của tam giác vuông AEC nên EC là cạnh lớn nhất(cạnh huyền lớn hơn cạnh góc vuông)

=>  A B C D x E

7 tháng 1 2018

B C A M O

\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)

Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC ) 

\(\widehat{MCA}=60^o-50^o=10^o\)

\(\Delta AMB=\Delta AMC\)( c.c.c )

suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)

\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân