A=1/2+1/2^2+1/2^3+1/2^4+...+1/2^2017 . Chung minh rang A>0 và <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}\)
\(A=\dfrac{1}{8}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}>\dfrac{1}{8}>\dfrac{1}{12}\left(1\right)\)
Xét thừa số tổng quát: \(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}=\dfrac{1}{n\left(n^2-1\right)}=\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
Hay:
\(A< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}+...+\dfrac{1}{2016.2017.2018}\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}+...+\dfrac{1}{2016.2017}-\dfrac{1}{2017.2018}\right)\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2017.2018}\right)=\dfrac{1}{4}-\dfrac{1}{2.2017.2018}< \dfrac{1}{4}< \dfrac{505}{5028}\left(2\right)\)
Từ (1) và (2) ta có đpcm
Mình cảm ơn bạn nhiều lắm Mong bạn có thể giúp đỡ mình trong những cơ hội nhé thank you😊😊😊😊😊
\(Ta\)có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
Ta có:
112 =1;122 <11.2 ;132 <12.3 ;...;1502 <149.50
=>A=112 +122 +132 +...+1502 <1+(11.2 +12.3 +...+149.50 )
=1+(1−12 +12 −13 +...+149 −150 )
=1+(1−150 )
=1+1−150
=2−150 <2
=> A < 2
a) Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)
Mà \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}\)
\(=\frac{7}{8}<1\)
Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{7}{8}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<1\)
Ta thấy : A > 0
Có :
2A = 1+1/2+1/2^2+.....+1/2^2016
A = 2A - A = (1+1/2+1/2^2+.....+1/2^2016) - (1/2+1/2^2+.....+1/2^2017) = 1 - 1/2^2017 < 1
=> ĐPCM
Tk mk nha
tra loi nhanh gium minh nha