CÂU 1: TÌM HAI CHỮ SỐ TẬN CÙNG CỦA TỔNG SAU :
B= 3 + 32 + 33 + 34 +...+32009
CÂU 2: SO SÁNH 200920 VÀ 2009200910
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2009^{20}=\left(2009^2\right)^{10}=\left(2009\cdot2009\right)^{10}\)
\(20092009^{10}=\left(2009\cdot10001\right)^{10}\)
mà \(2009< 10001\)
nên \(2009^{20}< 20092009^{10}\)
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
200920200920 và 2009200910.2009200910.
Ta có:
200920=(20092)10=(2009.2009)10.200920=(20092)10=(2009.2009)10.
2009200910=(2009.10001)10.2009200910=(2009.10001)10.
Vì 2009.2009<2009.100012009.2009<2009.10001
⇒(2009.2009)10<(2009.10001)10⇒(2009.2009)10<(2009.10001)10
⇒200920<2009200910.
ta có : \(2009^{20}=2009^{10}.2009^{10}\) ; \(20092009^{10}=2009^{10}.10001^{10}\)
Mà \(2009^{10}.2009^{10}\)<\(2009^{10}.10001^{10}\)
=> \(2009^{20}< 20092009^{10}\)
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
\(2009^{20}=\left[\left(2009\right)^2\right]^{10}=4036081^{10}\)
mà \(4036081< 20092009\)
nên \(2009^{20}< 20092009^{10}\)
2009²⁰ = (2009²)¹⁰ = 4036081¹⁰
Do 4036081 < 20092009
⇒ 4036081¹⁰ < 20092009¹⁰
Vậy 2009²⁰ < 20092009¹⁰
\(2009^{20}=2009^{10}.2009^{10}\)
\(20092009^{10}=\left(10001.2009\right)^{10}=10001^{10}.2009^{10}\)
Vì \(2009^{10}=2009^{10}\) mà \(2009^{10}< 10001^{10}\) nên \(2009^{20}< 20092009^{10}\)
200920=200910.200910200920=200910.200910
2009200910=(10001.2009)10=1000110.2009102009200910=(10001.2009)10=1000110.200910
Vì 200910=200910200910=200910 mà 200910<1000110200910<1000110 nên 200920<2009200910
Ta có : \(3A=3+3^2+3^3+...+3^{102}\)
Lấy 3A trừ A theo vế ta có :
\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)
\(2A=3^{102}-1\)
\(A=\frac{3^{102}-1}{2}\)
Ta có : 3102 - 1 = 3100 + 2 - 1
= 325.4 + 2 - 1
= 325.4 . 32 - 1
= ....1 . 9 - 1
= ...9 - 1
= ...8
=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)
Vậy chữ số tận cùng của A là 4
Nhân A thêm 3
Lấy 3A - A được 3^102 -1
A = (3^102-1)/2
3^4k có tận cùng là 1
nên A có tận cùng là 0
Câu 1 :So Sánh
\(3^{34}\text{và }5^{20}\)
\(\Leftrightarrow3^{34}>5^{20}\)
Câu 2 : Tìm chữ số tận cùng
\(3^{25}\text{có tận cùng là 3}\)
\(9^{27}\text{có tận cùng là 9}\)
Học tốt
Câu 2 :
Có : 20092009^10 = (2009.1001)^10 = 2009^10 . 1001^10
Vì : 1001 < 2009
=> 20092009^10 < 2009^10.2009^10 = 2009^20
Tk mk nha
https://olm.vn/hoi-dap/question/211678.html