\(\text{Giải pt}\)
\(A^2_{x-2}+C^{x-2}_x=101\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge4\)
\(\dfrac{\left(x-2\right)!}{\left(x-4\right)!}+\dfrac{x!}{\left(x-2\right)!.2!}=101\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+\dfrac{x\left(x-1\right)}{2}=101\)
\(\Leftrightarrow3x^2-11x-190=0\)
\(\Rightarrow x=10\)
đk x>3,\(x\in N\)
áp dụng công thức tổ hợp và chỉnh hợp ta có
\(A^3_x+C^{x-2}_x=14x\) suy ra \(\frac{x!}{\left(x-3\right)!}+\frac{x!}{\left(x-2\right)!\left(2!\right)}=14x\Rightarrow x\left(x-1\right)\left(x-2\right)+\frac{x\left(x-1\right)}{2}=14x\) suy ra \(x\left[\left(x-1\right)\left(x-2\right)+\frac{x-1}{2}-14\right]=0\)
giair pt ra ta tìm đc x
\(\Leftrightarrow\frac{-x+1}{2}=\frac{x-2}{x-4}\)
\(\Leftrightarrow x^2+4x-3=2x-4\)
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Bài này là bài lớp 8 mà.
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
\(3x^2-x+1=0\)
<=> \(3\left(x^2-\frac{1}{3}x+\frac{1}{3}\right)=0\)
<=> \(x^2-2\times x\times\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{1}{3}=0\)
<=> \(\left(x-\frac{1}{6}\right)^2=-0,305555\)
<=> x thuộc rỗng
Giải :
\(A^2_{x-2}+C^{x-2}_x=101\)\(\left(ĐK:\hept{\begin{cases}x\in Z\\x\ge4\end{cases}}\right)\)
\(\Leftrightarrow\frac{\left(x-2\right)!}{\left(x-4\right)!}+\frac{x!}{\left(x-2\right)!2!}=101\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)+\frac{x.\left(x-1\right)}{2}=101\)
\(\Leftrightarrow2.\left(x-2\right).\left(x-3\right)+x.\left(x-1\right)=202\)
\(\Leftrightarrow2x^2-6x-4x+12+x^2-x-202=0\)
\(\Leftrightarrow3x^2-11x-190=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\left(tm\right)\\x=\frac{-19}{3}\left(l\right)\end{cases}}\)