K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)

\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....8\right).\left(1.2.3.4.....8\right)\)

\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)

\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)

\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)

\(\Leftrightarrow\)\(x=1\)

Vậy \(x=1\)

5 tháng 2 2018

\(\left(9!-8!\right).7!.x=1^2.2^2.3^2.4^2.....8^2\)

\(\Leftrightarrow\)\(8!\left(9-1\right).7!.x=\left(1.2.3.4.....16\right).\left(1.2.3.4.....16\right)\)

\(\Leftrightarrow\)\(8!.8.7!.x=8!.8!\)

\(\Leftrightarrow\)\(8!.8!.x=8!.8!\)

\(\Leftrightarrow\)\(x=\frac{8!.8!}{8!.8!}\)

\(\Leftrightarrow\)\(x=1\)

Vậy \(x=1\)

Vậy 

`@` `\text {Ans}`

`\downarrow`

`3^3 * x^2 - 2^4 * x^2 = 8^2 * 5 - 4^2 * 3^2`

`=> x^2 . (3^3 - 2^4) = 2^6 . 5 - 2^4 . 3^2`

`=> x^2 . 11 = 2^4 . (2^2 . 5 - 3^2)`

`=> x^2 . 11 = 2^4 . 11`

`=> x^2 . 11 - 2^4 . 11 = 0`

`=> 11 . (x^2 - 16) = 0`

`=> x^2 - 16 = 0`

`=> x^2 = 16`

`=> x^2 = (+-4)^2`

`=> x = `\(\pm4\)

Vậy, `x \in`\(\left\{4;-4\right\}\)

_____

\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2\cdot2^2=4^2\cdot3\)

`=>`\(\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+\left(3\cdot2\right)^2=48\)

`=>`\(\dfrac{23}{108}\cdot x+6^2=48\)

`=>`\(\dfrac{23}{108}x=48-6^2\)

`=>`\(\dfrac{23}{108}x=48-36\)

`=>`\(\dfrac{23}{108}x=12\)

`=>`\(x=\dfrac{1296}{23}\)

Vậy, `x = `\(\dfrac{1296}{23}\)

13 tháng 7 2023

\(3^3.x^2-2^4.x^2=8^2.5-4^3.3^2\)

\(\Leftrightarrow x^2\left(27-16\right)=2^6.5-2^6.9\)

\(\Leftrightarrow11x^2=2^6.\left(5-9\right)=-4.2^6=-2^8\)

\(\Leftrightarrow x^2=-\dfrac{2^6}{11}< 0\)

\(\Rightarrow x\in\varnothing\)

\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)

\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+36=48\)

\(\Leftrightarrow\dfrac{23}{108}x=12\Leftrightarrow x=\dfrac{12.108}{23}=\dfrac{1296}{23}\)

20 tháng 1 2022

M=\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{17}{8^2.9^2}+\dfrac{19}{9^2.10^2}\)

=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{17}{64.81}+\dfrac{19}{81.100}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{81}+\dfrac{1}{81}-\dfrac{1}{100}\)

=1-\(\dfrac{1}{100}\)=\(\dfrac{99}{100}\)<\(\dfrac{100}{100}=1\)

20 tháng 1 2022

.

a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)

b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

23 tháng 2 2022

\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)

23 tháng 2 2022

\(\Leftrightarrow\dfrac{1}{4}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{\left(x-1\right)x}\right)=\dfrac{1}{8}\)   ( đk x khác 0 , x khác 1)

\(\Leftrightarrow\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{x-1}-\dfrac{1}{x}\right)=\dfrac{1}{8}\)

\(\Leftrightarrow1-\dfrac{1}{x}=\dfrac{1}{2}\)

=> x =2 ( tm)

29 tháng 6 2015

1/

\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)

\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

Phương trình đã cho  tương đương:

 \(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=4\)

2/ 

\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)

\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)

3/

Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(=2.\frac{n+1}{n+2}<2\) (do \(\frac{n+1}{n+2}=1-\frac{1}{n+2}<1\))

1.  25 : 5,7 = 250/57

2.  30:2.8.4 = 480

3.  20:2^2.14= 70

4.  125:5^3.170= 170

5.  64:2^5.30.4=240

6.  (25:5^2.30): 15.7=14

       bạn à! Nhiều quá mình ko làm hết được. sorry nha.^-^                     

20 tháng 7 2018

dù dài quá nhưng cố  gắng giúp mình làm hết nha

13 tháng 8 2015

a)  \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)

B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)

BÀI 2:

A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)

\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)

\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)

\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)

b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)

\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)

ngoặc 1 có 99 số hạng x

\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3.\frac{99}{100}=1\)

\(\Leftrightarrow99x=1+\frac{3.99}{100}\)

\(\Leftrightarrow99x=\frac{397}{100}\)

\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)