(\(\frac{x+2}{x^2-5x+6}\)-\(\frac{x+3}{2-x}\)+\(\frac{x+2}{x-3}\)):(2-\(\frac{x}{x-1}\))
rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}+\frac{2+x}{3-x}+\frac{x+2}{x^2-5x+6}\right)\)
ĐKXĐ : x ≠ -1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 11/5
\(=\left(\frac{x+1}{x+1}-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-4}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\frac{x-3}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{1}{x+1}\times\frac{x-2}{1}\)
\(=\frac{x-2}{x+1}\)
Trả lời:
a, \(A=\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)\left(ĐKXĐ:x\ne-2;x\ne-3;x\ne1\right)\)
\(=\left(\frac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{\left(3-x\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+2\right)\left(x+3\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2-\left(9-x^2\right)+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{4-x^2-9+x^2+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{\left(-x-3\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(-1\right)}=\frac{-\left(x+3\right)\left(x+1\right)}{-\left(x+2\right)\left(x+3\right)}=\frac{x+1}{x+2}\)
b, A > 0
\(\frac{x+1}{x+2}>0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x< -2\end{cases}}\)
Vậy để A > 0 thì x > - 1 với x khác 1
hoặc x < - 2 với x khác - 3
ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne-2\\x\ne1\end{cases}}\);
Ta có \(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}\)
\(=\frac{-x-3}{\left(x+3\right)\left(x+2\right)}=-\frac{1}{x+2}\)
Khi đó \(\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)=-\frac{1}{x+2}:-\frac{1}{x-1}=\frac{x-1}{x+2}\)
Khi A = 0 => x - 1 = 0 => x = 1 (loại)
Khi A > 0 => \(\frac{x-1}{x+2}>0\)
TH1 : \(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow x>1\)
TH2 \(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Rightarrow x< -2\)
Vậy với x > 1 hoặc x < - 2 ; x \(\ne\)-3 thì A > 0
a) ĐK: \(x\ne-3;x\ne-2;x\ne1\)
\(A=\left(\frac{2-x}{x+3}+\frac{x-3}{x+2}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2+x^2-9+2-x}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)=\frac{-1}{x+2}.\left(1-x\right)=\frac{x-1}{x+2}\)
b) A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}=0\)
Do x khác -2 nên x - 1 = 0 hay x = 1 (loại vì ko thỏa ĐK)
A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}>0\)Xét 2 TH:
- TH1: x - 1 > 0 và x + 2 > 0 suy ra x > 1 và x > -2 nên ta chọn x > 1.
- TH1: x - 1 < 0 và x + 2 < 0 suy ra x < 1 và x < -2 nên ta chọn x < -2. Và x khác -3
Vậy để A > 0 thì x > 1 hoặc x < -2 \(\left(x\ne-3\right)\)
bài này dễ mà mk gợi ý rồi cậu tự làm ha . tách mẫu x^2 + 5x + 6 sau đó đặt nhân tử chung rồi tính con ve sau thì quy đồng lên rồi tính . mk goi y thế chắc cậu ko hiểu lắm đúng ko nhưg hiện h mk bạn làm chưa có ai thèm giải hộ mk có cậu làm đc phần đó thì giải hộ mk đi . Làm ơn !
M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5
= 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1
k mk nha
\(\text{ĐKXĐ:}\hept{\begin{cases}x\ne1\\x\ne2\\x\ne3\end{cases}}\)
\(\frac{x+2}{\left(x-2\right)\left(x-3\right)}+\frac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}:\frac{2x-2-x}{x-1}\)
\(=\frac{x+2+x^2-9+x^2-4}{\left(x-2\right)\left(x-3\right)}.\frac{x-1}{x-2}=\frac{2x^2+x-11}{\left(x-2\right)\left(x-3\right)}\cdot\frac{x-1}{x-2}=\frac{\left(x-1\right)\left(2x^2+x-11\right)}{\left(x-2\right)^2\cdot\left(x-3\right)}\)