K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB\(\sim\)ΔOCD
Suy ra: AB/CD=OA/OC

=>4/CD=1/3

hay CD=12(cm)

14 tháng 2 2021

Bạn phải đợi thôi, khổ thân bạn thật.

Bạn đợi hết tết khi ấy mấy bạn giỏi sẽ giúp bạn thôi nha.

14 tháng 2 2021

hic hic cám ơn bn rất nhiều 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

Áp dụng định lý Talet cho các cặp cạnh song song ta có:

$\frac{CD}{AB}=\frac{OC}{OA}=\frac{OE+EC}{OA}=\frac{OE}{OA}+\frac{EC}{OA}=\frac{OB}{OD}+1=\frac{AB}{CD}+1$

Đặt $\frac{AB}{CD}=x(x>0)$ thì:

$\frac{1}{x}=x+1\Leftrightarrow x^2+x-1=0$

Do $x>0$ nên $x=\frac{-1+\sqrt{5}}{2}$

Vậy.........

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

8 tháng 3 2021

a, Xét Δ IDC có

AB // CD => ΔIAB \(\sim\) ΔIDC

=> \(\dfrac{IA}{ID}\) = \(\dfrac{IB}{IC}\) = \(\dfrac{AB}{DC}\)

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\) ; \(\widehat{ODC}=\widehat{OBA}\) ; \(\widehat{AOB}=\widehat{COD}\)

=> ΔOAB \(\sim\) ΔOCD

=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{IA}{ID}=\dfrac{IB}{IC}=\dfrac{IA+IB}{ID+IC}=\dfrac{OA+OB}{OC+OD}\)

8 tháng 3 2021

còn phần b,c để tối tui lm nha, h đi chs :))

19 tháng 5 2021

ABCD là hình thang nên AB//CD

tg OAB và tg OCD có : 

góc BAC=Góc ADC(so le trong do AB//CD)

góc ABD =góc BDC(so le trong do AB//CD)

nên Tg OABđồng dạng với tg OCD(g.g)

=>\(\frac{OA}{OC}=\frac{AB}{CD}=\frac{6}{10}=\frac{3}{5}\)