Cho tam giác ABC vuông tại A, phân giác AD.
a, Tính AB, AC; biết DB=15, DC=20
b, Đường cao AH, phân giác của góc HAB cắt HB tại E, phân giác của góc HAC cắt HC tại F. Tính AH, HE, HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆ABC và ∆ADC có:
AC chung
AB = AD (gt)
⇒ ∆ABC = ∆ADC (hai cạnh góc vuông)
b) Do ∆ABC = ∆ADC (cmt)
⇒ ∠BCA = ∠DCA (hai góc tương ứng)
⇒ CA là tia phân giác của ∠BCD
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=50(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay BH=18(cm)
Ta có: ΔBAC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(MB=MC=\dfrac{BC}{2}=25\left(cm\right)\)
Bài 1:
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
Suy ra: \(\widehat{EDA}=\widehat{FDA}\)
hay DA là tia phân giác của \(\widehat{EDF}\)
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
a: d//AD
AD cắt AC tại A
Do đó: d cắt AC tại E
b: Gọi Ax là tia đối của tia AB
=>góc xAC là góc ngoài tại đỉnh A của ΔABC
=>AD là phân giác của góc xAC
AD//BE
=>góc xAD=góc ABE và góc DAE=góc AEB
mà góc xAD=góc DAE
nên góc ABE=góc AEB
c: b vuông góc AD
d//AD
Do đó: b vuông góc d
Em tự vẽ hình nhé
a) Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\);
\(\widehat{BDE}=\widehat{CDF}\) (đối đỉnh)
\(\Rightarrow\Delta BED\sim\Delta CFD\) (g.g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC\:}=90^0\);
\(\widehat{BAE}=\widehat{CAF}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE\sim\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\)
c) Do \(BE//FC\) (cùng vuông góc \(AD\))
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{BE}{FC}\) mà \(\dfrac{BE}{FC}=\dfrac{BD}{CD}\) (do \(\Delta BED\sim\Delta CFD\))
Lại có \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (tính chất tia phân giác); \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (câu b)
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{AE}{AF}\Rightarrow SA//BE\) (ĐL Ta-let đảo)
\(\Rightarrow SA//CF\Rightarrow SA\perp AF\)
bài ở đâu vậy mé