K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018
  1. Tập xác định của phương trình

  2. Rút gọn thừa số chung

  3. Đơn giản biểu thức

  4. Giải phương trình

  5. Giải phương trình

  6. Biệt thức

  7. Biệt thức

  8. Nghiệm

  9. Lời giải thu được

3 tháng 2 2018

x(2x-9)=3x(x-5)

<=>x(2x-9)-3x(x-5)=0

<=>x[(2x-9)-3(x-5)]=0

<=>x(2x-9-3x+15)=0

<=>x(-x+6)=0

=> x=0 hoặc -x+6=0

=> x=0           x   =6

Vậy S={0;6}

17 tháng 8 2021

\(x+\sqrt{9-x^2}-x\sqrt{9-x^2}=3\left(-3\le x\le3\right)\)

\(\Leftrightarrow\sqrt{9-x^2}-x\sqrt{9-x^2}=3-x\\ \Leftrightarrow9-x^2+x^2\left(9-x^2\right)-2x\sqrt{\left(9-x^2\right)^2}=9-6x+x^2\\ \Leftrightarrow9+8x^2-x^4-2x\left(9-x^2\right)=x^2-6x+9\\ \Leftrightarrow-x^4+2x^3+7x^2-12x=0\\ \Leftrightarrow-x\left(x^3-2x^2-7x+12\right)=0\Leftrightarrow-x\left(x^3-3x^2+x^2-3x-4x+12\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2+x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=3\left(N\right)\\x^2+x-4=0\left(1\right)\end{matrix}\right.\)

 \(\Delta\left(1\right)=1-4\left(-4\right)=17>0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{17}}{2}\left(N\right)\\x=\dfrac{-1+\sqrt{17}}{2}\left(N\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;3;\dfrac{-1-\sqrt{17}}{2};\dfrac{-1+\sqrt{17}}{2}\right\}\)

Tick ✔

16 tháng 4 2021

a, \(x^2\)≥1

\(\Leftrightarrow\) x>1

b, \(x^2\)<1

\(\Rightarrow\) x∈∅

c, \(x^2\)+3x ≥ 0

\(\Leftrightarrow\) \(x^2\)≥-3x

\(\Leftrightarrow\) x≥-3

d, \(x^2\)+3x+3≥0

\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)

\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0

\(\Leftrightarrow\)\(x^2\)\(\dfrac{9}{4}\)

\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)

 

1 tháng 12 2017

x(2x – 9) = 3x(x – 5)

⇔ x.(2x – 9) – x.3(x – 5) = 0

⇔ x.[(2x – 9) – 3(x – 5)] = 0

⇔ x.(2x – 9 – 3x + 15) = 0

⇔ x.(6 – x) = 0

⇔ x = 0 hoặc 6 – x = 0

+ 6 – x = 0 ⇔ x = 6

Vậy tập nghiệm của phương trình là S = {0; 6}.

25 tháng 5 2021

\(x-4\sqrt{x-2}+1=0\)(Đk x>2)

\(x-2-4\sqrt{x-2}+4-1=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-3=0\\\sqrt{x-2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=9\\x-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)(thảo đk)

Vậy\(\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)là nghiệm của pt

25 tháng 5 2021

undefined

26 tháng 4 2022

\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow2>0\)

Vậy \(S=\left\{2\right\}\)

26 tháng 4 2022

-ĐKXĐ: \(x\ne3\)

\(\dfrac{x-1}{x-3}>1\)

\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow\dfrac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

-Vậy tập nghiệm của BĐT là {x l x>3}

16 tháng 2 2022

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

16 tháng 2 2022

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

NV
2 tháng 3 2022

ĐKXĐ: \(2\le x\le5\)

\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)

\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)

15 tháng 5 2021

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022