K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

Xet ΔOAE và ΔOCF có

góc OAE=góc OCF

góc AOE=góc COF

=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF

Xét ΔOEB và ΔOFD có

góc OEB=góc OFD

góc EOB=góc FOD

=>ΔOEB đồng dạng với ΔOFD

=>EB/FD=OE/OF=AE/CF

mà CF=DF

nên EB=AE

=>E là trung điểm của BA

27 tháng 3 2020

Bn tham khảo tai  link sau nha: https://hoidap247.com/cau-hoi/225442

11 tháng 3 2021

Do AE // DF, nên theo định lý Thales ta có:

\(\dfrac{AE}{DF}=\dfrac{OE}{OF}\). (1)

Do BE // CF, nên theo định lý Thales ta có:

\(\dfrac{BE}{CF}=\dfrac{OE}{OF}\). (2)

Từ (1), (2), kết hợp với gt DF = CF, ta có AE = BE. (đpcm)

17 tháng 10 2023

Ta có: 

tam giác AEB = tam giác CFD 

=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\) 

mà 2 goác có vị trí đồng vị

=> EB//DF

Mặt khác: ED//BF

=> EBFD là h.b.h

Ta có: 

Tam giác END= tam giác FMB

=> DN=BM

=> DN+MN=BM+MN=BN

Ta có:

Vì tứ giác ABCD và EBFC đều là h.b.h

=> AC, BD, EF đồng quy tại trung điểm của EF

4 tháng 9 2023

Bạn tự vẽ hình nha .

7.1 

Ta có : T/g ABCD là hbh

Suy ra : AB = CD 

Mà E là trung điểm của AB ; F là trung điểm của CD.

Suy ra : AE=BE=DF=CF

Xét t/g AECF có : AE = CF ( cmt )

                            AE // CF ( AB //CD )

Suy ra : t/g AECF là hbh. ( đpcm )

7.2 

Từ gt : t/g ABCD là hình bình hành

Suy ra : AC ; BD đồng quy tại trung điểm của AC hoặc trung điểm của BD (1) 

Từ 7.1 : suy ra : AC và EF đồng quy tại trung điểm của mỗi đường (2) 

Từ (1) và (2) : Suy ra : AC;BD;EF đồng quy tại trung điểm của AC; BD hoặc EF.

4 tháng 9 2023

7.1

Vì ABCD là hình bình hành -> AB = CD -> AE = FC

Tứ giác AEFC có AE song song FC, AE = FC 

-> AECF là hình bình hành

7.2

Gọi AC∩BD tại O

Ta có tứ giác ABCD là hình bình hành, hai đường chéo hình bình hành cắt nhau tại trung điểm mỗi đường

⇒O là trung điểm của AC và BD

Mà tứ giác DEBF là hình bình hành nên O là trung điểm của BD thì O cũng là trung điểm của EF

⇒AC;BD;EF cùng đồng quy tại O.