Bài 1: Cho hình thang ABCD (AB//CD) có O là giao điểm của AC và BD. Gọi F là trung điểm của CD. E là giao điểm của OF và AB. Chứng minh rằng: E là trung điểm của AB
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng: a) DM^2 = MN*MK b) DM/DN+DM/DK=1
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA