K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

toan lop 1 gi kho qua vay

18 tháng 4 2016

day la toan 6 ma!

29 tháng 11 2015

gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a+b cũng như thế

Vì ab chia hết cho d nên a hoặc b chia hết cho d﴾vì d là số nguyên tố﴿.

Giả sử a chia hết cho d mà a+b chia hết cho d nên b chia hết cho d

=> d là ước nguyên tố của a và b, trái với đề bài cho a và b nguyên tố cùng nhau hay ƯCLN﴾a,b﴿=1

Vậy ............... 

10 tháng 3 2018

Giả sử an + bn và ab là 2 số nguyên tố cùng nhau.

=> an + bn và ab cùng chia hết cho 1 số nguyên tố d.

=> an + bn + ab chia hết cho d.

=> a(an-1 + b) + bn chia hết cho d.

=> a(an-1 + b) chia hết cho d.

=> a chia hết cho d (1).

=> an-1 + b chia hết cho d => b chia hết cho d (2).

Từ (1) và (2) => a, b cùng chia hết cho 1 số nguyên tố d (trái với giả thiết a, b là 2 số nguyên tố cùng nhau).

=> an + bn và ab không là 2 số nguyên tố cùng nhau.

10 tháng 3 2018

Mình nhầm:

Giả sử an + bn  không là 2 số nguyên tố cùng nhau. Còn kết quả bạn ghi lại cái đpcm

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

24 tháng 9 2021

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

25 tháng 5 2015

a) Gọi d ∈ ƯC (a, a + b) ⇒ (a + b) - a  ⋮  d ⇒ b  ⋮  d. Ta lại có a  ⋮  d nên d ∈ ƯC (a, b), do đó d =1 (vì a, b là hai số nguyên tố cùng nhau). Vậy (a, a + b) = 1.

25 tháng 5 2015

Đặt d \(\in\) ƯC(a ; a + b)  \(\Rightarrow\) a chia hết cho d và a + b chia hết cho d.

\(\Rightarrow\) (a + b) - a chia hết cho d \(\Rightarrow\) b chia hết cho d.

Ta có: a chia hết d và b chia hết cho d \(\Rightarrow\) d \(\in\) ƯC(a ; b) , do đó d = 1 (vì a và b là hai số nguyên tố cùng nhau)

Vậy ƯCLN(a ; a + b) = d = 1 nên a và a + b là hai số nguyên tố cùng nhau

29 tháng 11 2015

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

tick nha!

29 tháng 11 2015

CHTT nha avt342767_60by60.jpgLê Nguyễn Bảo Trân