K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

mk làm trên facebook, đo khó vẽ hình trên đây lại ko paste được hình lên nữa. Nick face là Cung Lâm Thiên Quốc. Mong bạn thông cảm cho.!!!!!!!! 

16 tháng 6 2021

gọi giao điểm của AJ với BD là H

giao điểm của AI với BD là E

giao điểm 2 đường chéo AC và BD là K

do ABCD là hình bình hành\(=>\left\{{}\begin{matrix}AK=KC\\KD=KB\end{matrix}\right.\)

\(=>DK\) là tiếp tuyến trong \(\Delta ADC\)

mà AJ cũng là tiếp tuyến trong \(\Delta ADC\)(do J là trung điểm CD)

\(=>H\) là trọng tâm \(=>BH=\dfrac{2}{3}DK=\dfrac{2}{3}.\dfrac{1}{2}.BD=\dfrac{1}{3}BD\left(1\right)\)

chứng minh tương tự đối với \(\Delta ACB=>E\) là trọng tâm

\(=>BE=\dfrac{2}{3}KB=\dfrac{2}{3}.\dfrac{1}{2}.BD=\dfrac{1}{3}BD\left(2\right)\)

\(\left(1\right)\left(2\right)\)\(=>HE=\dfrac{1}{3}BD=HD=EB\left(dpcm\right)\)

31 tháng 10 2018

A B C D M N o G G'

Gọi O là giao điểm của AC  và BD => O là trung điểm AC  (1), O là trung điểm BD(2)

Gọi G là giao điểm của AN và BD 

N là trung điểm DC (3)

Từ  (1), (3) =>  G là trọng tâm tam giác ADC => DG=2/3DO=\(\frac{2}{3}.\frac{1}{2}\)BC=1/3 BC

Tương tự gọi G' là giao điểm của AM và BD ta có G' là trọng tâm tam giác ABC=>BG"=2/3 BO=1/3BD

=>GG'=1/3 DB

=> DG=GG'=G'B

14 tháng 7 2018

Xét tam giác  ABC  có :

AM và BO là 2 đường trung tuyến .

Áp dụng tính chất trọng tâm của 1 tam giác và tính chất 2 đường chéo trong hình bình hành ta có :

\(BF=\frac{2}{3}BO=\frac{2}{3}\times\frac{1}{2}BD=\frac{1}{3}BD\)

Xét tam giác ADC có :

\(DE=\frac{1}{3}BD\)

\(\Rightarrow EF=\frac{1}{3}BD\)

Và \(BF=FE=ED\)( đpcm)

14 tháng 7 2018

A B C D F O E M

17 tháng 10 2018

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định nghĩa, tính chất và theo giả thiết của hình bình hành, ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Tứ giác AICK có cặp cạnh đối song song và bằng nhau nên AICK là hình bình hành.

a:

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

OM=OD/2

ON=OB/2

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

=>AMCN là hbh

b: Xét tứ giác AFCE có

AF//CE

AE//CF
=>AFCE là hbh

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên FB=ED