K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Để mNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

Để MNPQ là hình thoi thì MN=MQ

=>AC=BD

c: BD=3/2*AC=30cm

=>MQ=BD/2=15cm; MN=AC/2=10cm

SMNPQ=15*10=150cm2

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

5 tháng 9 2017

2 tháng rồi bạn có biết kết quả chưa vậy

8 tháng 9 2017

dùng biểu thức vectơ bạn ơi

30 tháng 7 2023

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

26 tháng 9 2019

Tương tự bài 3A

15 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔCDA có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

24 tháng 8 2022

a) QQ là trung điểm của ADAD

MM là trung điểm của ABAB

⇒QM⇒QM là đường trung bình của ΔABDΔABD

⇒QM∥=12BD⇒QM∥=12BD (1)

Tương tự PNPN là đường trung bình của ΔBCDΔBCD

⇒PN∥=12BD⇒PN∥=12BD (2)

Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)

⇒⇒ tứ giác MNPQMNPQ là hình bình hành.

 

Ta có: QQ là trung điểm của ADAD

JJ là trung điểm của ACAC

⇒QJ⇒QJ là đường trung bình của ΔACDΔACD

⇒QJ∥=12CD⇒QJ∥=12CD (1)

Tương tự KNKN là đường trung bình của ΔBCDΔBCD

⇒KN∥=12CD⇒KN∥=12CD (2)

Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)

⇒⇒ tứ giác JNKQJNKQ là hình bình hành.

 

b) Tứ giác MNPQMNPQ là hình bình hành

⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O

⇒O⇒O là trung điểm của MPMP và QNQN

Tứ giác INKQINKQ là hình bình hành

Có hai đường chéo là QNQN và KJKJ

OO là trung điểm của QNQN

⇒O⇒O là trung điểm của KJKJ

⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.