K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

a) xét tam giác ABC có : góc A + góc B + góc C = 1800( tổng 3 góc trong 1 tam giác)

=> Góc B = 180- (góc A + góc C ) = 180 -(90+30) = 600

b) Xét tam giác HAB có

góc AHB = 900 (gt)

góc ABH = 600 (cmt)

góc AHB  + góc ABH  + góc HAB = 1800 (tổng 3 góc trong 1 tam giác)

=> góc HAB = 180 - ( góc AHB  + góc ABH ) = 180 -( 90 +60) = 300

Vậy góc HAB = góc C = 300

6 tháng 5 2017

A B C H K I 1 2

a.Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là trung tuyến

=> HB=HC

b. Vì HB=HC=10:2=5(cm)

Áp dụng định lý Pi-ta -go vào tam giác AHB có

\(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

c. Xét 2 tam giác AHK và tam giác AHI có:

Vì AH là đường cao mà tam giác ABC cân tại A nên AH cx là đường phân giác:

nên ta có: \(\widehat{A}_1=\widehat{A_2}\)

AH chung

=> tam giác AHK=tam giác AHI(c.g.c)

=>HI=HK(2 cạnh tương ứng )

d. Xl nha câu d quên cách ch/m rồi..

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB

21 tháng 5 2016

Áp dụng Py-ta-go trong tam giác vuông AKC ta được:

AK2 + KC2 = AC2 => AK = \(\sqrt{AC^2-KC^2}\)\(=\sqrt{10^2-6^2}=8cm\)

Ta có: \(\frac{AK}{AB}=\frac{AH}{AC}\Rightarrow AH=AK=8cm\)

Vậy AH = 8cm

22 tháng 4 2015

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A

d) ('Mình ko biết')

28 tháng 7 2016

a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :

Góc AHC = góc BAC = 90o; góc C chung

=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)

b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144

=> \(AB=\sqrt{144}=12\left(cm\right)\)

Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')

=> Góc BIH = góc ADB

Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB

=> Tam giác AID cân tại A