Cho p là số nguyên tố
CMR:8p+1 và 8p-1 ko cùng là số nguyên tố hoặc cùng là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Với p=3
=>8p‐1=23 ﴾thỏa mãn﴿
8p+1=25 là hợp số =>﴾loại﴿
Với p khác 3
=>p không chia hết cho 3
=>8p không chia hết cho 3
mà ﴾8p‐1﴿p﴾8p+1﴿là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p‐1 >3 ﴾p thuộc N﴿
=>8p‐1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số ﴾ĐPCM﴿
với p=3 suy ra p-1=23
8p+1=25(loại)
với p khác 3 suy ra p không chia hết cho3 suy ra 8p không chia hết cho3 mà (8p-1)p(8p+1) là tích của 3 số TN liên tiếp
Theo bài ra 8p-1>3(p thuộc N) suy ra 8p-1 ko chia hết cho 3
suy ra 8p+1 chia hết cho 3 mà 8p+1>3
suy ra 8p+1 là hợp số
nếu p lớn hơn 3 thì giải như sau
8p-1 là số nguyên tố vậy 8p-1 dư 1 hoặc 2
mà p là số nguyên tố vậy p :3 dư 1 hoặc 2
mà 8p-1 dư 1 hoặc 2
->p:3 dư 1 vì nếu dư2 thì8p-1 chia hết cho 3
vậy 8p :3 dư2
->8p+1 chia hết cho 3
vậy 8p+1 là hợp số
Nhận xét : 3 số 8p-1; 8p; 8p + 1 là 3 số tự nhiên liên tiếp
Ta có tính chất: Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
nên tích (8p-1). 8p. (8p+1) chia hết cho 3
mà 8p ; 8p - 1 không chia hết cho 3 nên 8p+ 1 phải chia hết cho 3 => 8p+1 là số nguyên tố
cái này cậu chỉ cần mở vài quyển sách nâng cao ra là được mà
Nếu 8p-1 là số nguyên tố ; Nếu 8p+1 là hợp số => 8p+1 là số chẵn.
Ngoại trừ số 2 ra tất cả số chắn đều là hợp số .
Vậy 8p+1 là hợp số do nó là số chẵn (ĐPCM)
Chỗ "do nó là số chẵn" không viết cũng được
ai thấy đúng thì tk
ai thấy sai sửa giùm mình nhé
p là số nguyên tố => p không chia hết cho 3 => 8p không chia hết cho 3
Mà 8p-1,8p,8p+1 là 3 số tự nhiên liên tiếp nên trong đó có một số chia hết cho 3
=>8p-1 hoặ 8p+1 chia hết cho 3
Vậy...