K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

a: Xét ΔAEBvà ΔADC có

AE=AD
góc A chung

AB=AC
=>ΔAEB=ΔADC

=>BE=CD

b: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC

góc MBD=góc MCE
=>ΔMDB=ΔMEC

c: Xét ΔAMB và ΔAMC có

MA chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

1 tháng 5 2023

`@`` \text {dnv}`

`a,`

Xét `\Delta ABE` và `\Delta ACD`:

`\text {AB = AC (Tam giác ABC cân tại A)}`

`\hat {A}`` \text {chung}`

`\text {AD = AE (gt)}`

`=> \Delta ABE = \Delta ACD (c-g-c)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Vì `\Delta ABE = \Delta ACD (a)`

$ -> \widehat {ACD} = \widehat {ABE} (\text {2 góc tương ứng})$

`->` $\widehat {ADC} = \widehat {AEB} (\text {2 góc tương ứng})$

Ta có: \(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\)

$\widehat {ADC} = \widehat {AEB}$

`->` $\widehat {CEB} = \widehat {BDC}$

Ta có:\(\left\{{}\begin{matrix}\text{AB = AD + DB}\\\text{AC = AE + EC}\end{matrix}\right.\)

Mà: \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{AD = AE}\end{matrix}\right.\)

`-> \text {BD = EC}`

Xét `\Delta BMD` và `\Delta CME`:

\(\widehat{\text{DBM}}=\widehat{\text{ECM}}\left(\text{CMT}\right)\)

\(\text{BD = CE (CMT)}\)

\(\widehat{\text{BDM}}=\widehat{\text{CEM}\text{ }}\text{ }\left(\text{CMT}\right)\)

`=> \Delta BMD = \Delta CME (g-c-g)`

`c,` Đề có phải là "Chứng minh AM là phân giác của góc BAC" ?

Vì `\Delta BMD = \Delta CME (b)`

`-> \text {MB = MC (2 cạnh tương ứng)}`

Xét `\Delta BAM` và `\Delta CAM`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\text {AM chung}`

`\text {MB = MC (CMT)}`

`=> \Delta BAM = \Delta CAM (c-c-c)`

`->` $\widehat {BAM} = \widehat {CAM} (\text {2 góc tương ứng})$

`-> `\(\text{AM là tia phân giác của }\widehat{\text{BAC}}\)

loading...

a: Kẻ DH và EK lần lượt vuông góc với BC

=>DH//EK

H,B lần lượt là hình chiếu của D,B trên BC

=>HB là hình chiếu của DB trên BC

K,C lần lượt là hình chiếu của E,C trên BC

=>KC là hình chiếu của EC trên BC

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=EC
góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=KC và DH=EK

b: Xét ΔABE và ΔACD có

AB=AC
góc BAE chung

AE=AD
=>ΔABE=ΔACD

=>BE=CD

c: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC
góc MBD=góc MCE

=>ΔMDB=ΔMEC

d: Xét ΔABM và ΔACM có

AM chung

MB=MC

AB=AC

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

23 tháng 8 2023

còn câu e kìa bạn

14 tháng 2 2016

a) Xét tam giác BDC và tam giác CEB ta có

  BC chung

  góc DBC=góc ECB( do tam giác ABC cân)

  BD=EC  ( AB=AC mà AD=AE)

Nên 2 tam giác bằng nhau

   Nên BE=CD

 

 

29 tháng 3 2018

                                               Bài giải

* Hình tự vẽ

a) Xét tam giác AEB và tam giác ADC có:

Góc A là góc chung

 AD = AE (gt)

AB = AC ( tam giác ABC cân tại A )

-> Tam giác AEB = tam giác ADC (c-g-c)

-> BE = CD (hai cạnh tương ứng)

29 tháng 3 2018

A B C M D E

a) Tam giác ABC cân tại A nên AB = AC .

Xét hai tam giác ABE và ACD có: AB = AC, góc A chung và AE = AD nên tam giác ABE = tam giác ACD.

=> BE = CD 

P/s: b) , c) bn tự lm nhé, xin lỗi!

27 tháng 9 2017