K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

\(\frac{2x+1}{4}\)-\(\frac{y-2}{3}\)=\(\frac{1}{12}\)

=\(\frac{3.\left[2x+1\right]}{12}\)-\(\frac{4.\left[y-2\right]}{12}\)=\(\frac{1}{12}\)

=6x+3-4y-6=1

=6x-3-4y=1

=6x-4y=4

=2[3x-2y]=4

MK MỚI HỌC LỚP 8 ,CHÚA SẼ CHUYỂN HỆ PHƯƠNG TRÌNH CUỐI CÙNG ,BẠN GIẢI NỐT NHA 

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

29 tháng 11 2017

cậu cứ nhân 5 vào phương trình (2)

cộng 2 phương trình lại cậu sẽ ra được x+y-1=2

thế cái vừa tìm được vào 1 trong 2 phương trình thi sẽ ra thêm một phương trình 2x-y=-13

giải hệ rồi tìm được x và y

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

21 tháng 1 2018

Ta có nếu x=0 hoặc y=0 hoặc z=0 thì hpt vô nghiệm. Vậy x,y,z khác 0

\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)nghịch đảo ta có (nghịch đảo đc vì x,y,z khác 0)\(\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{6}\\\frac{y+z}{yz}=\frac{3}{4}\\\frac{z+x}{xz}=\frac{7}{12}\end{cases}}\)<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\\\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\\frac{1}{z}+\frac{1}{x}=\frac{7}{12}\end{cases}}\)

Đặt a=\(\frac{1}{x}\),b=\(\frac{1}{y}\),c=\(\frac{1}{z}\)ta có \(\hept{\begin{cases}a+b=\frac{5}{6}\\b+c=\frac{3}{4}\\c+a=\frac{7}{12}\end{cases}}\) <=>\(\hept{\begin{cases}a+b+c=\left(\frac{5}{6}+\frac{3}{4}+\frac{7}{12}\right):2\\b=\frac{5}{6}-a\\c=\frac{7}{12}-a\end{cases}}\)

Thay vào giải ta có \(a+b+c=\frac{13}{12}\)

\(a+\frac{5}{6}-a+\frac{7}{12}-a=\frac{13}{12}\) => \(a=\frac{1}{3}\)=>\(x=3\)

tiếp tục tìm đc \(b=\frac{1}{2}\)=>\(y=2\)

                      \(c=\frac{1}{4}\)=>\(z=4\)

Vậy nghiệm hpt là \(\hept{\begin{cases}x=3\\y=2\\z=4\end{cases}}\)

18 tháng 1 2018

Đặt \(M=\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)

Ta có: \(\frac{xy}{x+y}=\frac{6}{5}\Leftrightarrow xy=6\&x+y=5\)

\(\Rightarrow x=5-6=\left(-1\right)\)

     \(\frac{yz}{y+z}=\frac{4}{3}\Leftrightarrow yz=4\&y+z=3\)

\(\Rightarrow y=3-4=\left(-1\right)\)

\(\frac{zx}{z+x}=\frac{12}{7}\Leftrightarrow zx=12;z+x=7\Rightarrow z=7-12=-5\)

\(\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-5\end{cases}}\)

23 tháng 5 2017

1.

x + \(\sqrt{1-x^2}\) = 1

ĐK: -1 <= x <= 1

<=> \(\sqrt{1-x^2}\)= 1 - x

Vì 1 - x >= 0 nên ta có thể bình phương 2 vế

<=> 1 - x2 = (1 - x)2

<=> 1 - x2 = 1 - 2x + x2

<=> 2x2 - 2x = 0

<=> 

x = 0

x = 1

23 tháng 5 2017

2.

Hệ tương đương

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\\frac{4y-3x}{xy}=1\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5\left(4y-3x\right)\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\y=\frac{3x}{4-x}\end{cases}}\)

Thay y = \(\frac{3x}{4-x}\)Vào PT trên

=> \(\frac{42x}{4-x}\)= 21x

<=> 42x = 21x(4 - x)

<=> 2x = x(4 - x)

<=> x2 - 2x = 0

x = 0 (Loại vi x khác 0)

x = 2, => y = 3

Vậy, Nghiêm của hệ PT:

x = 2

y = 3

10 tháng 7 2019

1/y = -1/2 - x 

thay 1 phần y vào vế 2 xong tìm x rồi thay x vào vế 1 tìm y ~  ~ 

10 tháng 7 2019

chi tiết đc kh bạn ơi