Tìm giá trị nhỏ nhất của biểu thức
a) \(Q=\frac{x+16}{\sqrt{x}+3}\)
b) \(M=x^2+5y^2+4xy+2x+12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)
\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)
\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)
\(A=x^2+5y^2+4xy+2x+12\)
\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)
\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)
Vậy giá trị nhỏ nhất của biểu thức A =7
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)
Dấu = xảy ra <=> x=4
b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)
=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)
dấu = xảy ra <=> y=1 và x=-3
^_^
giúp mình với mọi người ơi mình đang cần bài này gấp lắm