giai he phuong trinh
2x+3y=3
5x-6y=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)
3x^2-2xy+2y^2=7 (1)
-8=x^2+6xy-3y^2 (2)
Nhân theo vế 2 phương trình (1) và (2) ta có: -24x^2+16xy-16y^2=7x^2+42xy-21y^2
(=) 31x^2 +26xy -5y^2=0 (=) (31x-5y)(x+y)=0 (=) 31x=5y hoặc x=-y
Thay vào (1) ta tìm được nghiệm ( 5/ căn 241; 31/ căn 241);(-5/ căn 241; -31/ căn 241);(1;-1);(-1;1)
\(\hept{\begin{cases}3x+2y=30\left(1\right)\\2x+3y=35\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta có:
\(3x+2y-2x-3y=30-35\)
\(\Leftrightarrow x-y=-5\)(3)
Lấy (2) + (1) ta có:
\(2x+3y+3x+2y=30+35\)
\(\Leftrightarrow5\left(x+y\right)=65\)
\(\Leftrightarrow x+y=13\)(4)
Từ (3) và (4) ta có:
\(\hept{\begin{cases}x-y=-5\\x+y=13\end{cases}}\)
Đến đây bạn tự làm nốt nhé~
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)
The vao roi tinh la xong
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)
b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)
Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)
Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10
Làm đại bạn nhé, tại chưa có học hệ pt:Đ
\(2x+3y=3\Rightarrow3y=3-2x\)
\(\Rightarrow5x-6y=12\Leftrightarrow5x-2.3y=12\Leftrightarrow5x-2\left(3-2x\right)=12\Leftrightarrow5x-6+4x=12\Leftrightarrow9x-6=12\Leftrightarrow x=2\)Thay x=2, ta được y=\(-\dfrac{1}{3}\)
Chắc là sai đó anh/chị)):
\(\left\{{}\begin{matrix}2x+3y=3\\5x-6y=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x+6y=6\left(1\right)\\5x-6y=12\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Leftrightarrow9x=18\Rightarrow x=2\Rightarrow y=\dfrac{3-4}{3}=-\dfrac{1}{3}\)