\(\frac{sin40}{cos50}\)đố thôi chứ tôi biết rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)
A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)
A=\(\frac{1}{2}\)(-sin10+sin10)+1
A= 1
Ta có: \(\sin10^0+\sin40^0-\cos50^0-\cos80^0\)
\(=\left(\sin10^0-\cos80^0\right)+\left(\sin40^0-\cos50^0\right)\)
\(=\left(\cos80^0-\cos80^0\right)+\left(\cos50^0-\cos50^0\right)\)
\(=0\)
a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)
b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)
= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)
= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)
= \(1+1=2\)
a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.
vd: \(sin30^o=cos70^o\)
b) Gợi ý: \(sin^2+cos^2=1\)
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
hỏi đáp trước
Bao
Giờ
lên
lp
9
tôi
giải
cho
hihi
?