giải bất phương trình x2 - x -2 >=căn(3-x) + can x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
ĐK: \(x\ge\frac{5}{4}\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
<=> \(9x^2-25+\sqrt{4x-5}-\sqrt{x}>0\)
<=> \(\left(3x-5\right)\left(3x+5\right)+\frac{3x-5}{\sqrt{4x-5}+\sqrt{x}}>0\)
<=> \(\left(3x-5\right)\left(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}\right)>0\)
<=> 3x - 5 > 0 vì \(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}>0\) với mọi \(x\ge\frac{5}{4}\)
<=> x > 5/3 thỏa mãn đk
Ta có: 3(x – 2)(x + 2) < 3 x 2 + x
⇔ 3( x 2 – 4) < 3 x 2 + x
⇔ 3 x 2 – 12 < 3 x 2 + x
⇔ 3 x 2 – 3 x 2 – x < 12
⇔ -x < 12
⇔ x > -12
Vậy tập nghiệm của bất phương trình là S = {x|x > -12}
(x – 3)2 < x2 – 3
⇔ x2 – 6x + 9 < x2 – 3
⇔ x2 – 6x – x2 < -3 – 9
⇔ -6x < -12
⇔ x > 2 (Chia cả hai vế cho -6 < 0, BPT đổi chiều)
Vậy BPT có nghiệm x > 2.
cộng thêm 2 vế vs 3x cho thành hằng đẳng thức