Tìm giá trị lớn nhất của biểu thức: \(B=\frac{3x^2+4x}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
a) Giá trị lớn nhất:
\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)
Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)
Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)
do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)
Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)
Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)
b) Giá trị nhỏ nhất
\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)
Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)
\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)
vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)
Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
Ta có :
\(P=\frac{3x^2-4x}{\left(x-1\right)^2}\)
\(=\frac{3x^2-6x+3}{\left(x-1\right)^2}+\frac{2x-2}{x-1}-\frac{1}{\left(x-1\right)^2}\)
\(=3+\frac{2}{x-1}-\frac{1}{\left(x-1\right)^2}\)
\(=-\left(\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.1+1-4\right)\)
\(=-\left(\frac{1}{x-1}-1\right)^2+4\)
Ta có :
\(\left(\frac{1}{x-1}-1\right)^2\ge0\)
\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2+4\le4\)
Dấu " = " xảy ra khi \(\frac{1}{x-1}=1\) hay x=2
Vậy GTLN của P là 4, đạt đc khi x = 2
Ta có : P = \(\frac{3x^2-4x}{\left(x-1\right)^2}=\frac{3\left(x^2-2x+1\right)+2.\left(x-1\right)-1}{\left(x-1\right)^2}=3+\frac{2}{x-1}-\frac{1}{\left(x-1^2\right)}\)
=\(-\left(\frac{1}{\left(x-1\right)^2}-\frac{2}{x-1}+1\right)+4=-\left(\frac{1}{x-1}-1\right)^2+4\le4\)
Dấu "=" xảy ra <=> \(\frac{1}{x-1}-1=0\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Vậy Max(P) = 4 <=> x = 2
\(a,x=2\Leftrightarrow A=3\cdot4-4\cdot2-1=12-8-1=3\\ b,B=x^3-1-2x+x^2-2+x-x^3=x^2-x-3\\ c,C=B-A=x^2-x-3-3x^2+3x+1=-2x^2-2x-2\\ C=-2\left(x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-2\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{2}\le-\dfrac{3}{2}\\ C_{max}=-\dfrac{3}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)