a,0,25.1+3/5.(5/4)2:4/7
b,1/15+1/35+1/63+1/99+1/143+1/195
c,1-(5+3/8+x-7+5/24):(-16+2/3)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}\)
= \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
= \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
= \(\frac{1}{2}.\frac{4}{15}\)
= \(\frac{2}{15}\)
\(1\frac{1}{2}+x=\frac{3}{2}-7\)
<=> \(\frac{3}{2}+x=\frac{-11}{2}\)
<=> \(x=-7\)
\(\frac{1}{4}+\frac{1}{3}:3x=-5\)
<=> \(\frac{1}{3}:3x=\frac{-21}{4}\)
<=> \(3x=\frac{-4}{63}\)
<=> \(x=\frac{4}{189}\)
\(\frac{4}{5}.x=\frac{8}{35}\)
<=> \(x=\frac{2}{7}\)
\(\frac{2}{3x}-\frac{1}{4}=\frac{7}{1}\)
<=> \(\frac{2}{3x}=\frac{29}{4}\)
=> \(8=87x\)
<=> \(x=\frac{8}{87}\)
\(\frac{3}{5x}+\frac{1}{2}=\frac{1}{7}\)
<=> \(\frac{3}{5x}=\frac{-5}{14}\)
<=> \(-25x=42\)
<=> \(x=\frac{-42}{25}\)
\(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16.\frac{2}{3}\right)=0\)
<=> \(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{-32}{3}=0\)
<=> \(\frac{43}{8}+x-\frac{173}{24}=\frac{-32}{3}\)
<=> \(\frac{43}{8}+x=\frac{-83}{24}\)
<=> \(x=\frac{-53}{6}\)
học tốt
\(a,A=\frac{-251489}{15750}\)
b,\(B=\frac{47}{12}\)
\(c,C=\frac{11}{25}\)
\(d,D=\frac{10}{39}\)
a)\(=\dfrac{211}{180}\)
b)\(=\dfrac{5}{39}\)
c)=\(=-\dfrac{65}{168}\)
Câu a:
\(\frac{1}{15}\) + \(\frac{1}{35}\) + \(\frac{1}{63}\) + \(\frac{1}{99}\) + \(\frac{1}{143}\)
= \(\frac{1}{3.5}\) + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + \(\frac{1}{9.11}\) + \(\frac{1}{11.13}\)
= \(\frac12.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
= \(\frac12\).(\(\frac13-\frac15+\frac15-\frac17+\frac17-\frac19+\frac19-\frac{1}{11}+\frac{1}{11}-\frac{1}{13})\)
= \(\frac12\).(\(\frac13\) - \(\frac{1}{13}\))
= \(\frac12\).(\(\frac{13}{39}-\frac{3}{39})\)
= \(\frac12\).\(\frac{10}{39}\)
= \(\frac{5}{39}\)