Cho abc(là số tự nhiên ) chia hết 7 .CTR 2a+3b+c chia hết 7(kết bạn với milk các bạn nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: abc+(2a+3b+c)\(⋮\)7, ta có:
abc+(2a+3b+c)=a.100+b.10+c+2a+3b+c
=a.98+7.b
Vì a.98\(⋮\)7 (98\(⋮\)7), 7.b\(⋮\)7\(\Rightarrow\)a.98+7.b\(⋮\)7
\(\Rightarrow\)abc+(2a+3b+c)\(⋮\)7
Mà theo đề bài abc\(⋮\)7\(\Rightarrow\)2a+3b+c\(⋮\)7(theo tính chất chia hết của 1 tổng)
abc chia hết cho 7 => 100a+10b+c chia hết cho 7
Mà 98a và 7b đều chia hết cho 7
=> 100a+10b+c - 98a - 7b chia hết cho 7
Hay 2a + 3b + c chia hết cho 7
=> ĐPCM
k mk nha
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
abc=100a+10b+c=(98a+7b)+(2a+3b+c)=7(14a+b)+(2a+3b+c) không chia hết cho 7 vì 2a+3b+c không chia hết cho 7
abc chia hết cho 7
=>100a+10b+c chia hết cho 7
=>2a+3b+c+98a+7b chia hết cho 7
=>2a+3b+c+7.(14a+b) chia hết cho 7
Mà 7.(14a+b) chia hết cho 7
Nên: 2a+2b+c chia hết cho 7
Ta thấy abc = 100a + 10b + c = (98a + 7b) + (2a + 3b + c) = 7(14a + b) + (2a + 3b + c)
Thấy ngay 7(14a + b) chia hết cho 7 nên nếu 2a + 3b + c không chia hết cho 7 thì tổng 100a + 10b + c không chia hết cho 7. Nói cách khác abc không chia hết cho 7.
a chia hết cho 7 => a=7q
b chia hết cho 7 => b=7p
c chia hết cho 7 => c=7e
=> 2a+3b+c=2.7q+3.7p+7e=7(2q+3p+e) chia hết cho 7
=> 2a+3b+c chia hết cho 7
k mình nhé