so sánh 3/4 và 3+m/4+m với mọi m thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 :
\(\frac{4343}{7777}\)= \(\frac{43.101}{77.101}\)=\(\frac{43}{77}\), 434343/777777= 43.10101/77.10101=43/77
M=1/4(4/1*5+8/5*13+12/13*15+16/25*41)
=1/4(1-1/5+1/5-1/13+...+1/25-1/41)
=1/4*40/41=10/41
N=1/3(6/1*7+9/7*16+...+18/43*61)
=1/3(1-1/7+...+1/43-1/61)
=1/3*60/61=20/41
=>M<N
cho M =1/1.25 + 2/5.13 + 3/13.25 + 4/25.41 và N = 2/1.7 + 3/7.16 + 4/16.28 + 5/28.43. So sánh M và N
N=1/3*(1-1/7+1/7-1/16+...+1/28-1/43)=1/3*42/43=14/43
M=86/1025
=>M<N
TH1: m chia 2 dư 1
=>9^m có chữ số tận cùng là 9
=>9^m chia 5 dư 4
=>9^m+1 chia hết cho 5
=>(9^m+1)(9^m+2)(9^m+3)(9^m+4) chia hết cho 5
TH2: m chia hết cho 2
=>9^m có chữ số tận cùng là 1
=>9^m+4 chia hết cho 5
=>(9^m+1)(9^m+2)(9^m+3)(9^m+4) chia hết cho 5
Ta có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
\(...\)
\(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M< N\)
Có \(\frac{3+m}{4+m}-\frac{3}{4}=\frac{m}{4\left(4+m\right)}>0,\forall m\in N\) Vậy \(\frac{3+m}{4+m}>\frac{3}{4}\)..