K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/b = a-x/b-y = a-(a-x)/b-(b-y) = x/y

=> x/y = a/b

Tk mk nha

20 tháng 2 2018

Theo t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{a-x}{b-y}=\frac{a-\left(a-x\right)}{b-\left(b-y\right)}=\frac{x}{y}\)

20 tháng 2 2018

Cảm ơn bạn nhiều

27 tháng 7 2015

Vì \(\frac{a-x}{b-y}=\frac{a}{b}\) nên \(\left(a-x\right).b=\left(b-y\right).a\) ;   \(ab-xb=ba-ya\)

Do đó : \(xb=ya\)       hay \(\frac{x}{y}=\frac{a}{b}\)(đpcm)

Vậy ___________________________

Theo đề bài ta có : 

         a-x/b-y=a/b

    => (a-x)b=(b-y)a

   => ab - xb=ba-ya

  => xb=ta

  => x/y = a/b

Vậy cho phân số a/b mà a-x/b-y=a/b thì suy ra được x/y=a/b ( đpcm)

# chúc bạn học tốt #

11 tháng 1 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a-x}{b-y}=\frac{a}{b}\)\(=\frac{a-x-a}{b-y-b}=\frac{-x}{-y}=\frac{x}{y}\)

=> \(\frac{a}{b}=\frac{x}{y}\)( điều phải chứng minh)

11 tháng 1 2017

sai rồi 

18 tháng 5 2015

Vì \(\frac{a-x}{b-y}=\frac{a}{b}\) nên (a - x) . b = (b - y) . a

\(\Leftrightarrow\) ab - xb = ba - ya

Do ab = ba \(\Rightarrow\) xb = ya hay \(\frac{x}{y}=\frac{a}{b}\)

27 tháng 12 2014

Nếu (a-x)/(b-y)=a/b thì a(b-y)=b(a-x)

                                 ab-ay=ab-bx

=>ay=bx

=>a/b=x/y

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0