Cho ba số dương x,y,z chứng minh đê
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần chứng minh \(\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\),theo BĐT AM-GM ta có:
\(\sqrt{\frac{y+z}{x}}\le\frac{x+y+z}{2x}=\frac{\frac{y+z}{x}+1}{2}\ge\sqrt{\frac{y+z}{x}}\) (đúng)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" ko xảy ra do ko có x;y;z thỏa mãn
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=1\) nên ta có ĐPCM
đặt a = 2x + y + z; b = 2y + z + x; c = 2z + x + y (a; b ; c > 0)
=> a + b + c = 4.(x+ y + z) => x + y + z = (a+ b+ c) / 4
=> x = a - (x+ y + z) = a - (a+ b + c) / 4
y = b - (x + y + z) = b - (a+b+c) / 4
z = c - (x+y + z) = c - (a+b+c)/ 4
Khi đó : \(VT=1-\frac{a+b+c}{4a}+1-\frac{a+b+c}{4b}+1-\frac{a+b+c}{4c}\)
\(VT=3-\left(\frac{a+b+c}{4a}+\frac{a+b+c}{4b}+\frac{a+b+c}{4c}\right)=3-\frac{1}{4}.\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(VT=3-\frac{1}{4}.\left(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\right)=3-\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\)
Với a, b > 0 ta có: a/b + b/ a > = 2
=> \(\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\ge\frac{1}{4}.\left(3+2+2+2\right)=\frac{9}{4}\)
=> \(VT\le3-\frac{9}{4}=\frac{3}{4}\)
Dấu = xảy ra khi a= b = c => x = y = z
a.
\(\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế:
\(VT\le\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
b.
\(VP=\dfrac{4\left(a+b+c\right)}{2\sqrt{4a\left(a+3b\right)}+2\sqrt{4b\left(b+3c\right)}+2\sqrt{4c\left(c+3a\right)}}\)
\(VP\ge\dfrac{4\left(a+b+c\right)}{4a+a+3b+4b+b+3c+4c+c+3a}\)
\(VP\ge\dfrac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)