K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :        \(2k-a⋮9\)       

và           \(:a-k⋮9\)                  

Suy ra :  ...

30 tháng 1 2018

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :      \(2a-k⋮3\)         

và     \(a-k⋮3\)                        

Suy ra :  \(a⋮3\)

...

16 tháng 5 2015

Giải:

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.

Như vậy:2a-k chia hết cho 9

và a-k chia hết cho 9

Suy ra : (2a-k)-(a-k) chia hết cho 9

Do đó : a chia hết cho 9

 

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9, do đó hiệu của chúng chia hết cho 9.

Như vậy :               

và                             

Suy ra :  

...

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:
Một số tự nhiên có cùng số dư khi chia cho 9 với tổng các chữ số của nó. Tức là:

$a-S(a)\vdots 9$

$2a-S(2a)\vdots 9$

$\Rightarrow a-k\vdots 9; 2a-k\vdots 9$

$\Rightarrow (2a-k)-(a-k)\vdots 9$

$\Rightarrow a\vdots 9$

23 tháng 10 2016

đề ra mập mờ quá

a và 2a

thế 2a là 2.a hay  là 2a nói chung hiểu kiểu gì cũng sai

không tồn tại

người ra đề thử tìm hộ tôi một số a cụ thể nào thỏa mãn đề bài xem nào?

sau đó mới nâng cấp lên tổng quát.

25 tháng 2 2020

Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9

20^n+16^n-3^n-1=(20^n-1^n)+(16^n-3^n)=(20-1)k+(256^x-9^x)                                      (n=2x)

=19k+247x=19(k+13x) chia hết cho 19

20^n+16^n-3^n-1=(20^n-3^n)+(16^n-1)=(20-3)f+(256^x-1^x)=17f+(256-1)x

=17f+255x=17(x+15x) chia hết cho 17

=>20^n+16^n-3^n-1 chia hết cho 17;19

=> 20^n+16^n-3^n-1 chia hết cho 323

=>ĐPCM neeys 

20 tháng 11 2015

Một số và tổng các chữ số của chúng khi chia cho 9 có cùng số dư và hiệu của chúng chia hết cho 9 

Gọi tổng các chữ số của a và 4a là k, ta có:

4a - k chia hết cho 9

a - k chia hết cho 9 

=> (4a - k ) - ( a -k) chia hết cho 9 

=> 3a chia hết cho 9 

=> a chia hết cho 3 (đpcm)

18 tháng 9 2017

3a ở đâu ra đã.Ble

6 tháng 10 2017

Bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/288658.html

9 tháng 10 2017

SAM LON